
CSE 134B Web Client Languages Lecture # 5

Part II
More on JavaScript

CSE 134B Web Client Languages Lecture # 5

Pre-DOM Model

CSE 134B Web Client Languages Lecture # 5

Two Object Models?

• An object model defines the interface to the various
aspects of the browser and document that can be
manipulated by JavaScript.

• In JavaScript, two primary object models are employed
1. a browser object model (BOM)

– The BOM provides access to the various characteristics of a browser
such as the browser window itself, the screen characteristics, the
browser history and so on.

2. document object model (DOM).
– The DOM on the other hand provides access to the contents of the

browser window, namely the document including the various HTML
elements ranging from anchors to images as well as any text that
may be enclosed by such elements.

CSE 134B Web Client Languages Lecture # 5

The Ugly Truth

• Unfortunately, the division between the DOM and
the BOM at times is somewhat fuzzy and the
exact document manipulation capabilities of a
particular browser’s implementation of JavaScript
vary significantly.

CSE 134B Web Client Languages Lecture # 5

The Big Picture

• Looking at the "big picture" of all various aspects of
JavaScript including its object models. We see four
primary pieces:

1. The core JavaScript language (e.g. data types, operators,
statements, etc.)

2. The core objects primarily related to data types (e.g. Date,
String, Math, etc.)

3. The browser objects (e.g. Window, Navigator, Location, etc.)
4. The document objects (e.g. Document, Form, Image, etc.)

CSE 134B Web Client Languages Lecture # 5

Big
Picture
Visually

CSE 134B Web Client Languages Lecture # 5

Four Five Models

• By studying the history of JavaScript we can bring some
order to the chaos of competing object models. There
have been four distinct object models used in JavaScript
including:

1. Traditional JavaScript Object Model (NS 2 & IE 3)
2. Extended Traditional JavaScript Object Model (NS 3)
3. Dynamic HTML Flavored Object Models

1. a. IE 4
2. b. NS 4

4. Traditional Browser Object Model + Standard DOM (Ffox,Chrome,etc.)
5. HTML5 Model!

CSE 134B Web Client Languages Lecture # 5

Traditional Object Model

CSE 134B Web Client Languages Lecture # 5

Overview of Core Objects

Object Description

Window The object that relates to the current browser window.

Document An object that contains the various HTML elements and text fragments that
make up a document. In the traditional JavaScript object model, the Document
object relates roughly the HTML <body> tag.

Frames[] An array of the frames in the Window contains any. Each frame in turn
references another Window object that may also contain more frames.

History An object that contains the current window’s history list, namely the collection of
the various URLs visited by the user recently.

Location Contains the current location of the document being viewed in the form of a URL
and its constituent pieces.

Navigator An object that describes the basic characteristics of the browser, notably its type
and version.

CSE 134B Web Client Languages Lecture # 5

Document Object

• The Document object provides access to page elements
such as anchors, form fields, and links as well as page
properties such as background and text color.

• Consider
– document.alinkColor, document.bgColor, document.fgColor,

document.URL
– document.forms[], document.links[], document.anchors[]

• We have also used the methods of the Document object
quite a bit
– document.write() , document.writeln(), document.open(),

document.close()

CSE 134B Web Client Languages Lecture # 5

Object Access by Document Position

• HTML elements exposed via JavaScript are often placed in arrays or
collections. The order of insertion into the array is based upon the
position in the document.

• For example, the first <form> tag would be in document.forms[0], the
second in document.forms[1] and so on.

• Within the form we find a collection of elements[] with the first
<input>, <select> or other form field in
document.forms[0].elements[0] and so on.

• As arrays we can use the length property to see how many items are
in the page.

• The downside of access by position is that if the tag moves the script
may break

CSE 134B Web Client Languages Lecture # 5

Object Access by Name

• When a tag is named via the name attribute (HTML 4.0 - <a>, ,
embedded objects, form elements, and frames) or by id attribute
(pretty much every tag) it should be scriptable.

• Given
<form id=“myform” name=“myform”>

<input type=“text” name=“username” id=“username”>
</form>

we can access the form at window.document.myform and the first
field as window.document.myform.username

CSE 134B Web Client Languages Lecture # 5

Object Access by Associative Array

• The collection of HTML objects are stored
associatively in the arrays.

• Given the form named “myform” we might access
it using
window.document.forms[“myform”]

• In Internet Explorer we can use the item()
method like so
window.document.forms.item(“myform”)

CSE 134B Web Client Languages Lecture # 5

Modern Access Solutions

• document.getElementById()
– id is not a name replacement completely, think form

fields (name-value pairs)

• document.getElementsByClassName()
• document.querySelectorAll()
• $() this is a wrapper function folks!
• Be careful though modern doesn’t always equal

better as we’ll see…things are still a mess at
times and speed is the main thing…if older works
everywhere and is faster why avoid it?

CSE 134B Web Client Languages Lecture # 5

Event Models

• JavaScript reacts to user actions through event handlers
(code associated with a particular event or object and
event in the page)

• Common events include Click, MouseOver, MouseOut,
etc.

• Events can be registered through HTML event handlers
like onclick or via JavaScript directly
– <input type=“button” value=“press” onclick=“alert(‘hi’)”>
– document.onload = new Function(“alert(‘hi’)”);

• We’ll see events primarily with links, form items and
mouse movement

CSE 134B Web Client Languages Lecture # 5

All Together

• Once document objects are accessed either by
user event or script event we can then modify
the various properties of the elements.

• The following examples on the next slides show
reading and writing of form fields as a
demonstration of this.

CSE 134B Web Client Languages Lecture # 5

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>
<title>Meet and Greet</title>
<script type="text/javascript">

function sayHello()
{
var theirname=document.myform.username.value;
if (theirname !="")
alert("Hello "+theirname+"!");

else
alert("Don't be shy.");

}
</script></head><body>
<form name="myform" id="myform">
What's your name?
<input type="text" name="username" id="username" size="20">

<input type="button" value="Greet" onclick="sayHello()">
</form>
</body>
</html>

CSE 134B Web Client Languages Lecture # 5

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html><head><title>Meet and Greet 2</title>
<script type="text/javascript">
function sayHello()
{
var theirname = document.myform.username.value;
if (theirname != "")
document.myform.response.value="Hello "+theirname+"!";

else
document.myform.response.value="Don't be shy.";

}
</script></head><body>
<form name="myform" id="myform">
What's your name?
<input type="text" name="username" id="username" size="20">

Greeting:
<input type="text" name="response" id="response" size="40">

<input type="button" value="Greet" onclick="sayHello()">
</form></body></html>

CSE 134B Web Client Languages Lecture # 5

The Object Models

• The next few slides present the various object
models supported pre-standard DOM. In
JavaScript 1 we focus primarily on the Netscape
3 DOM with some introduction to the non-
standard DHTML object models.

CSE 134B Web Client Languages Lecture # 5

Specific Object Models: Netscape 3

CSE 134B Web Client Languages Lecture # 5

Specific Object Models: Netscape 4

CSE 134B Web Client Languages Lecture # 5

Specific Object Models: Internet Explorer 3

CSE 134B Web Client Languages Lecture # 5

Specific Object Models: Internet Explorer 4

CSE 134B Web Client Languages Lecture # 5

The Cross Browser Nightmare

• The problem we face with JavaScript is that each object
model is different

• Somehow we either have to find a common ground
(traditional model), use object detection, use browser
detection, pick a particular object model like IE and stick
with it or just hope the standards work out

• We’ll see with the rise of the Document Object Model
(DOM) that someday maybe only certain BOM features will
be non-standard and all browsers will have the same ability
to manipulate page content.

CSE 134B Web Client Languages Lecture # 5

Chapter 10
The Standard Document

Object Model

CSE 134B Web Client Languages Lecture # 5

DOM Flavors

• The Document Object Model or DOM is a standard that
maps HTML and XML documents into objects for
manipulation by scripting languages such as JavaScript

• The DOM comes in the following flavors:
– DOM Level 0 – roughly equivalent to NS3’s object model. Often called

traditional or classic object model
– DOM Level 1 – Maps all the HTML elements and provides generic “node”

manipulation features via the document object.
– DOM Level 2 – Maps all CSS properties

Note: The later DOM levels also support the earlier objects so “classic” scripts
should work under DOM

CSE 134B Web Client Languages Lecture # 5

DOM Flavors Contd.

• Another breakdown of the DOM is
– DOM Core – core features for node manipulation (create, delete,

movement, etc.)
– DOM HTML – bindings to HTML tags (HTMLParagraph, etc.)
– DOM CSS – bindings to CSS properties
– DOM Events – event handling support
– DOM XML – bindings to deal with user defined XML languages

• Today’s modern browsers support DOM Core, DOM HTML, and a
good portion of DOM CSS. However, DOM events and DOM XML are
not consistently supported

CSE 134B Web Client Languages Lecture # 5

Document Trees

• The key to understanding the DOM is how an HTML
document is modeled as a tree. Consider

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head><title>DOM Test</title></head>
<body>
<h1>DOM Test Heading</h1>
<hr>
<!-- Just a comment -->
<p>A paragraph of text is just an example</p>

Yahoo!

</body>
</html>

CSE 134B Web Client Languages Lecture # 5

Modeled Document Tree

CSE 134B Web Client Languages Lecture # 5

Looking at the Tree

• The tree structure follows the structured nature of HTML.
<html> tags encloses <head> and <body>. <head>
encloses <title> and so on.

• Each of the items in the tree is called generically a node

• Notice that are different types of nodes corresponding to
HTML elements, text strings, and even comments. The
types of nodes relevant to most JavaScript programmers
is shown on the next slide.

CSE 134B Web Client Languages Lecture # 5

Node Types

Node Type

Number

Type Description Example

1 Element An HTML or
XML element.

<p>…</p>

2 Attribute An attribute for
an HTML or
XML element.

align=“center”

3 Text A fragment of
text that would
be enclosed by
an HTML or
XML element

This is a text fragment!

8 Comment An HTML
comment

<!-- This is a comment -->

9 Document The root
document
object, namely
the top element
in the parse tree

<html>

10 DocumentType A document
type definition

<!DOCTYPE HTML PUBLIC "-
//W3C//DTD HTML 4.01
Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

CSE 134B Web Client Languages Lecture # 5

Node Relationships

• Look at the tree for
<p>A paragraph of text is just an example</p>

Notice that the <p> tag has three direct children and one
“grandchild” Also make sure you understand the
sibling and parent relationships. The DOM relies on
them

CSE 134B Web Client Languages Lecture # 5

Node Relationships Contd.

CSE 134B Web Client Languages Lecture # 5

Accessing Nodes

• The easiest way to access nodes in a document
tree is via the getElementById() method for the
Document object.

• In order to use the method we need to name our
tags using the core attribute id like so
<p id="p1" align="center">A paragraph of
text is just an example</p>

CSE 134B Web Client Languages Lecture # 5

Accessing Nodes Contd.

• Using document.getElementById(‘p1’) we are returned an
DOM Element object that corresponds to the appropriate
node in the tree.

var currentElement = document.getElementById('p1');
var msg = "nodeName: "+currentElement.nodeName+"\n";
msg += "nodeType: "+currentElement.nodeType+"\n";
msg += "nodeValue: "+currentElement.nodeValue+"\n";
alert(msg);

CSE 134B Web Client Languages Lecture # 5

Accessing Nodes Contd.

• Notice the node value to be 1 (an element), the
type P corresponding to the HTML <p> tag, and
the nodeValue is null.

• The reason for the null value is that you have to
look at a text node to see the text within the
parent tag. We now need to learn how to move
around the tree. Fortunately there are some
generic node properties that make this very easy
as summarized on the next slide.

CSE 134B Web Client Languages Lecture # 5

DOM Node Properties
DOM Node Properties Description

nodeName Contains the name of the node
nodeValue Contains the value within the node,

generally only applicable to text nodes
nodeType Holds a number corresponding to the type

of node, as given in Table 10-1
parentNode A reference to the parent node of the

current object, if one exists
childNodes Access to list of child nodes
firstChild Reference to the first child node of the

element, if one exists
lastChild Points to the last child node of the element,

if one exists
previousSibling Reference to the previous sibling of the

node; for example, if its parent node has
multiple children

nextSibling Reference to the next sibling of the node;
for example, if its parent node has multiple
children

attributes The list of the attributes for the element
ownerDocument Points to the HTML Document object in

which the element is contained

CSE 134B Web Client Languages Lecture # 5

Basic Movement

• Using the common node properties you should
be able to move around a tree that you know the
structure of
var currentElement = document.getElementById(‘p1’);
currentElement = currentElement.firstChild;
currentElement = currentElement.nextSibling;
currentElement = currentElement.parentNode;

• This simple script would end up right were it
started from assuming that the starting node had
at least two children.

CSE 134B Web Client Languages Lecture # 5

Basic Movement Contd.

• We need to be careful though when we don’t know the tree structure
ahead of time

• Use simple conditionals to protect yourself from moving “off” tree

if (current.hasChildNodes())
current = current.firstChild;

if (current.parentNode)
current = current.parentNode;

• You should be able to easily write a safe tree traversal system once
you know the core properties and how to do if statements

CSE 134B Web Client Languages Lecture # 5

getElementsByName

• Related to getElementById() is the DOM method
getElementsByName() which deals with HTML elements identifed by
the name attribute including: <form>, <input>, <select>, <textarea>,
, <a>, <area>, and <frame>

• Elements using name actually didn’t have to have globally unique
names thus the DOM method getElementsByName() returns a list of
nodes with the passed name as shown here looking for something
called ‘mytag’

tagList = document.getElementsByName('myTag');
for (var i = 0; i < tagList.length; i++)

alert(tagList[i].nodeName);

CSE 134B Web Client Languages Lecture # 5

getElementsByClassName and Other Ideas

• These methods are NOT part of the DOM standard yet but are part of
HTML5 however even if not it is relatively easy to implement them

1. Find all elements in the tree via a walk
2. Compare the class values with the class or selector being searched for
3. If compares add to return list else move on

• Of course while it would be easy enough to implement such routines
their performance can be quite slow on large documents

• Most all browsers now implement getElementsByClassName natively
so you should use an if to see if this feature is in place before using
your own. We also note that querySelectorAll() and similar library
defined functions (ex. $()) allow us to find elements by CSS selector
for example $(‘p.foo > em’) might return a list of elements that meet
this CSS rule

CSE 134B Web Client Languages Lecture # 5

Traditional JavaScript Collections

• For backwards compatibility the DOM supports some object collections
such as document.forms[] , document.images[] and so forth which
were commonly supported amongst JavaScript aware browsers.

Collection Description

document.anchors[] A collection of all the anchors in a page
specified by

document.applets[] A collection of all the Java applets in a
page

document.forms[] A collection of all the <form> tags in a
page

document.images[] A collection of all images in the page
defined by tags

document.links[] A collection of all links in the page defined
by

CSE 134B Web Client Languages Lecture # 5

Generalized Element Collections

• Under the DOM you can create an arbitrary collection of elements
using getElementsByTagName()

allparagraphs = document.getElementsByTagName(‘p’);

• You can use many of these methods on nodes themselves to find the
elements within a particular element

allparagraphsinbody = document.body.getElementsByTagName(‘p’);

para1=document.getElementById(‘p1’);
emElements = para1.getElementsByTagName(‘em’);

CSE 134B Web Client Languages Lecture # 5

Common Tree Starting Points

• Rather than using a built-in collection or a named starting
point you may simply want to start at a well know common
tree position such as :

• document.documentElement
– should be the <html> tag

• document.body
– <body> tag

• document.doctype
– should be the <!doctype> statement but may not be and has

limited value

CSE 134B Web Client Languages Lecture # 5

Creating Nodes

• You can create nodes and then insert them into the
document tree
newNode = document.createElement(‘p’);

• Of course you may have to then create text nodes to put
inside of elements
newText = document.createTextNode(‘Hello there’);

• Then we will attach things together and attachto the
document
newNode.appendChild(newText);
document.body.appendChild(newNode);

CSE 134B Web Client Languages Lecture # 5

Create Node Methods

Method Description Example

createAttribute(name); Creates an attribute for an
element specified by the string
name. Rarely used with existing
HTML elements since they
have predefined attribute names
that can be manipulated
directly.

myAlign =
document.createAttribute(“align”);

createComment(string); Creates an HTML/XML text
comment of the form <!-- string
--> where string is the comment
content.

myComment =
document.createComment(“Just a
comment”);

createElement(tagName) Creates an element of the type
specified by the string
parameter tagName

myHeading =
document.createElement(“h1”);

createTextNode(string) Creates a text node containing
string.

newText =
document.createTextNode(“Some
new text”);

CSE 134B Web Client Languages Lecture # 5

Insert and Append Methods

• The two methods for node attaching are
insertBefore(newChild, referenceChild) and
appendChild(newChild)

• These methods run on a node object, for example

newText = document.createTextNode(‘Hi!’);
currentElement = document.body;
insertPt = document.getElementById(‘p1’);
currentElement.insertBefore(insertPt,newText);

CSE 134B Web Client Languages Lecture # 5

Copying Nodes

• Use the cloneNode() method to make a copy of a
particular node. The method take a Boolean argument
which indicates if the children of the node should be
cloned (a deep clone) or just the node itself

var current = document.getElementById(‘p1’);
newNode = current.cloneNode();
newSubTree = current.cloneNode(true);

CSE 134B Web Client Languages Lecture # 5

Deleting Nodes

• The Node object’s removeChild(child) method is useful to
delete a node out of the tree. You need to run this node
on the parent of the object you are interested in deleting

var current = getElementById(‘p1’);
currentParent = current.parentNode;
currentParent.removeChild(current);

• Note: The removeChild() method does return the node
object removed.

CSE 134B Web Client Languages Lecture # 5

Replacing Nodes

• You can also replace a node using
replaceChild(newchild, oldChild)

• The replaceChild() method will destroy the
contents of the node replace and does not side
effect the old value

CSE 134B Web Client Languages Lecture # 5

Modifying Nodes

• You can’t modify an element directly but you can modify its contents
particularly text nodes. Given

<p id=“p1”>This is a test</p>
Use

textNode = document.getElementById(‘p1’).firstChild;
then set the textNode’s data property

textNode.data = “I’ve been changed!”;
• There are a variety of DOM methods like appendData(), deleteData(

), insertData(), replaceData(), splitText(), and substringData() that
can be used, but since the data value is just a string you might want
to resort to commonly understood String object methods.

CSE 134B Web Client Languages Lecture # 5

Modifying Attributes

• Attributes can be manipulated by DOM methods like
getAttribute(name), setAttribute(attributename, attributevalue) and
removeAttribute(attributeName) that work off a particular Node object.
You can also check for the existence of attributes using the
hasAttributes() method.

• Most people do not use these DOM methods but directly modify the
attributes of the tag like so

<p id=“p1” align=“left”>This is a test</p>
• You would use

current = document.getElementById(‘p1’);
current.align = ‘right’;

CSE 134B Web Client Languages Lecture # 5

The DOM and HTML

• What you should begin to recognize now is the key to the DOM in
most Web pages is understanding HTML

• The various properties of a node correspond directly to its HTML
attributes. For example given a paragraph tag <p> it corresponds to
an HTMLParagraphElement with the following properties align, id,
className, title, lang, and dir. Notice the mapping from HTML
attributes to object properties is nearly one-to-one except for some
situations like the class attribute which would be a reserved word and
thus is renamed className under the DOM.

• Two word attributes like tabindex are represented in the DOM in
typical programming camel back form (e.g. tabIndex)

CSE 134B Web Client Languages Lecture # 5

The DOM and HTML

• The ramification of this relationship between HTML and JavaScript
via the DOM is that the language can now manipulate any arbitrary
HTML element in anyway, but it does require a well formed document
otherwise the results can be somewhat unpredictable

• Suddenly, knowing how to do HTML properly actually matters. Even
WYSIWYG editors will have to modified to ensure 100% validatable
markup to ensure correct JavaScript operation

• The intersection with CSS is very similar and covered under DOM
Level 2

CSE 134B Web Client Languages Lecture # 5

The DOM and CSS

• The style attribute for an HTML element allows style sheets
properties to be set inline. The DOM allows access to this attribute’s
value, for example given

<p id=“p1” style=“color: red”>Test</p>

then

theElement = document.getElementById(‘p1’);
theElement.style.color = ‘green’;

• What we see is like HTML the various CSS properties map to DOM
names directly, so font-size becomes fontSize, background-color
becomes backgroundColor, and so on. There are only one or two
exceptions to this conversion.

CSE 134B Web Client Languages Lecture # 5

The DOM and CSS Contd.

• We can manipulate the className and id properties of an
element as well to effect a style sheet change

• We can access the complete style sheet using the
document.styleSheets[] collection and then looking at the
cssRules[] collection within each <style> tag. You can
addRule(), removeRule() and insertRule() on an given
style sheet as well as change the various properties and
values.

• Be careful this aspect of the DOM Level 2 is poorly
implemented so far in browsers and in IE you may find
that non-standard approaches work better

CSE 134B Web Client Languages Lecture # 5

DOM Conclusions

• The DOM represents the possibility for easier cross-
browser scripting, but it also requires mastery of CSS and
HTML to be used properly

• Some aspects of the BOM are actually easier to use than
the DOM
– Consider creating nodes or manipulating text contents, some

programmers find using properties like innerHTML, innerText,
outerText, and outerHTML to be far easier than making nodes one
by one

• A great deal of legacy code using BOM objects like IE’s
document.all[] style exist and would have to be ported. This
will take time!

CSE 134B Web Client Languages Lecture # 5

Chapter 10
Event Models

CSE 134B Web Client Languages Lecture # 5

Traditional Event Model

• Event Binding with HTML attributes
– <p onclick=”alert(‘Stop that!’);”>Click me if you can!</p>

– Casing often camel case in old style HTML - <p
onClick=”...”>

– As HTML attributes case doesn’t matter, these are part
of HTML standard

– HTML4 defines: onblur, onchange, onclick, ondblclick,
onfocus, onkeydown, onkeypress, onkeyup, onload, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, onreset,
onselect, onsubmit, and onunload

– Example:
http://javascriptref.com/3ed/ch11/coreeventsattrs.ht
ml

CSE 134B Web Client Languages Lecture # 5

HTML5 Event Attributes

• HTML5 introduces a number of events some of
which are IEisms and some new to handle native
audio/video and markup based form checking

• Some of interest: oncontextmenu, ondrag, ondrop, oninput,
oninvalid, onmousewheel, onplay, onprogress, onratechange,
onreadystatechange, onseeked, onafterprint, onbeforeprint,
onprint, onbeforeunload, onerror, onhashchange, onmessage,
ononline, onoffline, onpopstate, onscroll, onstorage

• The book has a full discussion, but given the
transitory nature of HTML5 likely there are a
number of new ones

CSE 134B Web Client Languages Lecture # 5

Traditional Event Binding

• Simple Example

<p id="p1">Please click me!</p>
<script>
document.getElementById("p1").onclick = function ()
{

alert("Hey stop clicking me!");
};
</script>

• Must wait for element to be defined,
• Can’t do multiple binds obviously

CSE 134B Web Client Languages Lecture # 5

Traditional Event Binding

• Wouldn’t work - just second fires

<p id="p1">Please click me!</p>
<script>
function click1() { alert("First click handler"); }
function click2() { alert("Second click handler"); }
window.onload = function () {
document.getElementById("p1").onclick = click1;
document.getElementById("p1").onclick = click2;
};

• Can fix in code if you controlled it
document.getElementById("p1").onclick = function ()
{ click1(); click2(); };

CSE 134B Web Client Languages Lecture # 5

Old Multi-Bind Solution

• Easy enough to address the multi-bind problem
• Make a function that checks current handler & makes

new function with old & new handler added to it.
• Example:http://javascriptref.com/3ed/ch11/oldmultiev

entbind.html

function addEvent(obj,event,handler) {
var oldHandler = obj[event];
if (typeof obj[event] != "function") {
obj[event] = handler;

} else { obj[event] = function () {
if (oldHandler) { oldHandler.apply(); }

handler.apply();
}}};

CSE 134B Web Client Languages Lecture # 5

Event Handler Scope Details

• <script>
window.id = "theWindow";
</script>
<p id="theParagraph" onmouseover="alert(this.id);">Mouse over me!</p>

• <script>
window.id = "theWindow";
function showID() { alert(this.id); }
</script>
<p id="theParagraph" onmouseover="showID();">Mouse over me!</p>

• <script>
window.id = "theWindow";
function showID(el) { alert(el.id); }
</script>
<p id="theParagraph" onmouseover="showID(this);">Mouse over me!</p>

CSE 134B Web Client Languages Lecture # 5

Return Values

• Returning true or false to an event handler can change
the default behavior

Try to leave
<a href="http://www.w3.org/" onclick="return
confirm('Leave site and proceed to W3C?');">W3C

<form action="handleform.php" onsubmit="return
validateForm(this);">
<!-- form details omitted -->
</form>

CSE 134B Web Client Languages Lecture # 5

Firing Events Manually

• In general you can fire an event that a user can
trigger themselves

<form name="form1">
<input type="button" name="button1" value="Press Me"
onclick="alert('Hey there');">
</form>
<script>
// click the button programmatically
document.form1.button1.click();
</script>

• For security reasons some things are not triggerable or
not in the same manner as the user would issue it - ex:
file upload, mouse movement

CSE 134B Web Client Languages Lecture # 5

Overview of Modern Event Models
Feature Traditional Model Netscape 4 Model Internet Explorer 4–8 Model DOM2 Model

To bind a handler… XHTML attributes or direct assignment,

obj.onevent = function

XHTML attributes,

captureEvents()

XHTML attributes, attachEvent() XHTML attributes,

addEventListener()

To detach a handler… Set XHTML attribute to null with script Set XHTML attribute to null with

script, releaseEvents()

Set XHTML attribute to null with

script, detachEvent()

Set XHTML attribute to null with

script, removeEventListener()

The Event object… N/A Implicitly available as event in

attribute text, passed as an argument

to handlers bound with JavaScript

Available as window.event Passed as an argument to handlers

To cancel the default action… Return false Return false Return false Return false,

preventDefault()

How events propagate N/A From the Window down to the targetFrom the target up to the Document From the Document down to the

target and then back up to the

Document

To stop propagation… N/A N/A cancelBubble stopPropagation()

To redirect an event… N/A routeEvent() fireEvent() dispatchEvent()

CSE 134B Web Client Languages Lecture # 5

Overview of Modern Event Models Contd.

CSE 134B Web Client Languages Lecture # 5

Internet Explorer’s Proprietary Model

• attachEvent() and detachEvent()
• object.attachEvent("event to handle",

eventHandler);
• object.detachEvent("event to stop handling",

eventHandler);
• Examples

– http://javascriptref.com/3ed/ch11/attachevent.html
– http://javascriptref.com/3ed/ch11/detachevent.html

CSE 134B Web Client Languages Lecture # 5

IE Model Contd. - Event Object

• Transient Event object made available via a
global variable event

• The event object contains values like
– Event target values like srcElement, fromElement,

toElement
– Pixel coordinates (clientX, clientY, screenX, screenY, x,

y)
– Modifier keys - altKey, shiftKey, keyCode, ctrlKey

• Example:
http://javascriptref.com/3ed/ch11/eventattrib
utesIE.html

CSE 134B Web Client Languages Lecture # 5

IE Model Contd. - Event Bubbling

<script>
function gotClick(who) {

document.getElementById("results").innerHTML += who + " got the
click
";
}
</script>
</head>
<body onclick="gotClick('body');">
<table onclick="gotClick('table');"> <tr onclick="gotClick('tr');">
<td onclick="gotClick('td');"><p onclick="gotClick('p');">Click on the <b

onclick="gotClick('b');">BOLD TEXT to watch bubbling in action!
</p> </td></tr></table><hr>

<p id="results"> </p>
</body>

•Example: http://javascriptref.com/3ed/ch11/iebubble.html

CSE 134B Web Client Languages Lecture # 5

IE Model Contd. - Event Creation

• var myEvent =
document.createEventObject([eventObjectToClone])

• var evt = document.createEventObject (window.event);
evt.button = 1;
evt.clientX = Math.floor(Math.random()*800);
evt.clientY = Math.floor(Math.random()*600);

• Then send event with fireEvent()
document.body.fireEvent("onclick", evt);

• Example:
http://javascriptref.com/3ed/ch11/eventsIE.html

CSE 134B Web Client Languages Lecture # 5

DOM Event Model - Adding Events

• object.addEventListener(event, handler, capturePhase);
where:

– object is the node to which the listener is to be bound.
– event is a string indicating the event it is to listen for.
– handler is the function that should be invoked when the event

occurs.
– capturePhase is a Boolean indicating whether the handler should be

invoked during the capture phase (true) or bubbling phase (false).

• Example:http://javascriptref.com/3ed/ch11/addeventlist
ener.html

• Note: You are in charge of tracking what listeners are
bound - no listListeners()

CSE 134B Web Client Languages Lecture # 5

DOM Event Model - Removing Events

• object.removeEventListener(event, handler,
capturePhase); where:

– object is the node to which the listener is to be removed.
– event is a string indicating the event it is to stop listening for.
– handler is the function that should be removed when the event

occurs.
– capturePhase is a Boolean indicating whether the handler should

be invoked during the capture phase (true) or bubbling phase
(false).

• Example:http://javascriptref.com/3ed/ch11/removeev
entlistener.html

CSE 134B Web Client Languages Lecture # 5

Event Model Abstraction - POC

function addListener(obj, eventName, listener) {
if (obj.addEventListener) {
obj.addEventListener(eventName, listener, false);

} else {
obj.attachEvent("on" + eventName, listener);

}
}

function removeListener(obj, eventName, listener) {
if (obj.removeEventListener) {

obj.removeEventListener(eventName, listener, false);
} else {

obj.detachEvent("on" + eventName, listener); }
}
var el = document.getElementById(‘p1’);
addListener(el, “click”, handleClick);

CSE 134B Web Client Languages Lecture # 5

DOM Event Model - Event Object

• The DOM Event object contains similar items to the IE
Event object (pixel, key, target element, etc.) though
the names are slightly different

• See Table 11-8 - p. 446 for info and note bubbles,
cancelable, currentTarget, eventPhase, isTrusted,
relatedTarget, timeStamp, target, and type

• A big difference is that you do not access this object
using a global variable instead it is passed to the event
handler function being invoked

• Example:http://javascriptref.com/3ed/ch11/eventattri
butes.html

CSE 134B Web Client Languages Lecture # 5

DOM Event Model - Event Control

• Preventing Default Actions is beyond just returning false

<p>Try clicking this
link.</p> <form action="http://www.javascriptref.com"
method="get">
<input type="submit" value="submit me">
</form>
<script>
function killClicks(event) { event.preventDefault(); }

// kill all default click actions!
document.addEventListener("click", killClicks, true);
</script>

• Note though that the event may not cause the default action but it
will continue up the DOM tree unless told otherwise

CSE 134B Web Client Languages Lecture # 5

DOM Event Model - Event Control Contd.

• You can control the
propagation of an event using
event.stopPropagation()

• Example:
http://javascriptref.com/3ed/
ch11/stoppropagation.html

• Of course as shown here the
direction of propagation
changes depending on how you
decide to register the event

CSE 134B Web Client Languages Lecture # 5

DOM Event Creation

• Synthetic events made with document.createEvent()
evt = document.createEvent(“HTMLEvents”);

• Once created you make the event passing it a variety of
values to populate the event object properly

evt.initEvent(“click”,”true”,”true”);
// this syntax can get wild

• Finally find a node and dispatch the event to it
currentNode.dispatchEvent(evt);

• Example:
http://javascriptref.com/3ed/ch11/createevent.html

CSE 134B Web Client Languages Lecture # 5

DOM4 Event Creation Changes

• Making events in the DOM is one of its more convoluted areas
• DOM4 introduces a more sensible event constructor syntax.

document.getElementById("p2").addEventListener("mouse
over", function () { var evt = new Event("click",
{bubbles:true,cancelable:true});
document.getElementById("p1").dispatchEvent(evt);},
false);

• Example:http://javascriptref.com/3ed/ch11/createevent-
constructor.html

• Syntax has changed but not really functionality and developers
should be cautious for browser support with this approach

CSE 134B Web Client Languages Lecture # 5

DOM Event Notes - isTrusted

• Events generated by browser or direct user action are
“trusted” and thus isTrusted property on Event object is
true

• Synthetic events are triggered by code (maybe malicious
XSS) so they are not trusted and isTrusted is false.

• Example:http://javascriptref.com/3ed/ch11/istrusted.h
tml

• Do not be naive though reliance on this property and
code that may check it is dubious given the dynamic
nature of JavaScript

CSE 134B Web Client Languages Lecture # 5

Event Types - Mouse Events

• Mouse events are defined under the MouseEvent interface and
include:
click, dblclick, mousedown, mouseenter, mouseleave, mousemove,
mouseout, mouseover, mouseup

• Example:http://javascriptref.com/3ed/ch11/mouseevents.html
• Creation of mouse events is messy!

var evt = document.createEvent(“MouseEvent”);
initMouseEvent(type, bubbles, cancelable, view, detail, screenX,

screenY, clientX, clientY, ctrlKey, altKey, shiftKey, metaKey,
button, relatedTarget)

• Example:http://javascriptref.com/3ed/ch11/createmouseevents.ht
ml

• Mouse wheel handling is
troubling:http://javascriptref.com/3ed/ch11/mousewheel.html

CSE 134B Web Client Languages Lecture # 5

UI Events

• “UI event” includes:
DOMActivate, abort, error, load, resize, scroll, select, and unload

• Synthetic UI events are a bit easier than some
var evt = document.createEvent(“UIEvent”);
evt.initUIEvent(type, bubbles, cancelable, views, detail);

where
type is a string representing the particular event to create, such as "DOMFocusIn".
bubbles is a Boolean value indicating whether or not the event should bubble.
cancelable is a Boolean value indicating whether or not the event should be
cancelable.
view is the event’s AbstractView. You should pass the Window object here.
detail indicates event-specific details for the spawned event.

• Example:http://javascriptref.com/3ed/ch11/createuievents.html

CSE 134B Web Client Languages Lecture # 5

Other Events
• Keyboard

Events:http://javascriptref.com/3ed/ch11/keyboardevents.html
• Text Events: http://javascriptref.com/3ed/ch11/textinput.html
• Mutation

Events:http://javascriptref.com/3ed/ch11/mutationevents.html
• Non-Standard Events:

http://javascriptref.com/3ed/ch11/oncopy.html
• Custom

Events:http://javascriptref.com/3ed/ch11/customevent.html
http://javascriptref.com/3ed/ch11/customevent-constructor.html

• onebeforeunload, onreadystatechange, onhashchange, onmessage

CSE 134B Web Client Languages Lecture # 5

Library Rise Phase 1

• Well you can write this native DOM but that is no
fun. Maybe you want to smooth things out?

• 1st Gen Libraries – Solved browser inconsistencies
in the DOM, Events and Ajax
– jQuery, YUI, Prototype, MooTools, etc. (jQuery won!)

• Time passes and things change
– Too much success leads to problems

• Sloppy Inclusions and Bad Code Flow (thus need structure)
• DOM no longer a big deal smoothing but updating becomes

problem (remove some stuff, add virtual DOM)
• Things get slow (remove stuff, go native instead)

CSE 134B Web Client Languages Lecture # 5

Library Rise Phase 2

• 2nd Generation Libraries
– AngularJS, Ember, React, VueJS, etc.

• More focused on larger scale app building
– MVC pattern focused (maybe not a hot idea)
– Just the patterns and conventions though are helpful

• Databinding and updating become a big deal
• Overhead starts to become a more serious

problem

CSE 134B Web Client Languages Lecture # 5

Back to the Native? Phase 3

• Today we see that native components (Custom
Elements, Shadow DOM, etc.) might blow out
what many frameworks do
– Ex: Polymer (React, VueJS, and Angular all pointing

way as well)

• The mobile constraint is showing that
frameworks may not be worth it (depending on
situation)

• But the network is taking center stage again
(cue Ajax lecture!)

