
CSE 135 Server Side Web Languages Lecture # 3

Web Servers Overview

CSE 135 Server Side Web Languages Lecture # 3

The Programmer ÐIT Divide

¥ The Obvious Why ÐDivision of Labor
Ð IT: Don�t̀ touch those knobs! Put them in a sand box

so they don�t̀ hurt things, etc.
Ð Dev: I wanna try new framework/software X. I am

too busy programming to read logs / install patches

¥ Mind the gap!
¥ Security

¥ Performance

¥ Huge waste of time and money because we don�t̀ know
enough to meaningfully interact

CSE 135 Server Side Web Languages Lecture # 3

HmmÉsomething smells fishy

http://www.channelregister.co.uk/2010/07/29/cray_1_replica/
AþAn irony is that the resulting scale model Cray-1, …, is probably
more powerful than Cray's original near 40-year-old design.Aÿ

Today you need scads of PCs to serve simple Web apps?

versus

CSE 135 Server Side Web Languages Lecture # 3

The Role of a Web Server

¥ A box and a service
¥ Web servers serve various resources

Ð As file (document) servers
Ð As application front ends

¥ A physical server can of course serve many
protocols (SMTP, FTP, etc.) or may be protocol
specific
Ð Web Servers are of course HTTP servers
Ð But that Õs easy, right?

Handlers and Resources

Java Runtime

W
eb Server

html
handler

html

jsp

??

text/html
header

/bin/sh

include
file

shtml

text/html
header

Process
SSI tags

#exec
#include

script/
execu -
-table

Process
JSP tags

Java
Compiler

class

shtml
handler

jsp
handler

default
handler

cgi
handler

text/html
header

cgish,
perl,…

Web Server and App Server Interfaces

App Server
on front-end

API

App
Server
(internal IP)proxy to

back-end
app server tcp port

Native
Application

F
ro

nt
-e

nd
 W

eb
 S

er
ve

r

URL
redirection

App Server
on front-end

tcp
port

DB

HTTP

Modern Web Application Architecture

Browser

W
eb S

erver
DB

Scripted
App

Engine

Integrated
App

Framework

Framework
objects

W
eb S

ervices

WS
Client

Yeah they are kind of at the heart of it

¥ Your Web Server goes down it is going to take
everything with it

¥ Your Web Server can be a bottle neck
Ð So can your database
Ð So can your App server

Ð LetÕs not forget the network Ðthat Õs the real trouble

¥ Clearly the Web Server effects Apps and Apps
effect the Web Server shouldn Õt we know about
that and deal with it? ÐYes see HW1 J

CSE 135 Server Side Web Languages Lecture # 3

Planning Web Server Deployments

¥ Major issues to consider when planning a Web
server or Web site deployment
Ð What is the appropriate form of Web hosting?
Ð What type of server software will be used?

Ð What are the sizing requirements?

Ð How will DNS be handled?

¥ There are no fixed answers to any of these
questions

¥ Planning should be guided by the goals of the
deployment and should harmonize with the
related business processes

CSE 135 Server Side Web Languages Lecture # 3

Choosing Among the Hosting Options

¥ Host your own
Ð Pro: Complete control over the physical box
Ð Con: Expensive and difficult to maintain well

¥ Hosting provider schemes
Ð Dedicated Server

¥ Pro: Control without the hardware purchase
¥ Con: Must manage the box Ðremotely

Ð Co-located Server
¥ Pro: Admin control of entire box
¥ Con: Must purchase box and manage remotely

Ð Virtual Hosting
¥ Pro: Cheapest and easiest to maintain solution
¥ Con: Server is shared, admin access limited

Cloud Computing and Serverless!?

¥ Cloud computing has commoditized servers to
the point of instant provision and scaling of even
pre-defined OS / App configurations
Ð We can go farther! Infrastructure as service then to

Platform as service then to É

¥ Serverlessthought patterns say just upload
code and it works and scales. No need to
consider servers or administration just focus on
coding.
Ð This is very enticing but like anything has downsides

as well in terms of flexibility restrictions

CSE 135 Server Side Web Languages Lecture # 3

Choosing Server Software

Ð Apache
¥ Best reputation historically

¥ Fun with usage stats for public sites (ex. Netcraft)

¥ Features rapidly extended & refined via modular and open
development model

¥ Strong administrator ethos = well managed boxes

Ð IIS
¥ Included in Windows server environment

¥ Security black-eye (or is it from the OS?)

¥ Favored in business and intranets

¥ IIS 6 solid, IIS 7 is VERY Apache like

¥ Beware of sectarian quarrels about Web servers

CSE 135 Server Side Web Languages Lecture # 3

Choosing Server Software

¥ There actually is more than just Apache / IIS
Ð Notable ones include Ngnix (a big one these days!) ,

Lighthttpd , Zeus
¥ Most are high-performance Web servers used by some really large

sites

¥ Tries to provide APIs from both main worlds

Ð Many app servers (Tomcat, Zope, etc.) include Web
servers (or Apache) as part of their distribution

¥ Careful nodejs (JS), Perl, Python, etc. are used to
serve HTTP directly but those are very simple Web
servers and may reinvent things
Ð Be warned direct node HTTP serving is actually dangerous

CSE 135 Server Side Web Languages Lecture # 3

Choosing Server Software, cont.

¥ In real world, usually a conditioned choice if not
a forgone conclusion
Ð Biggest single factors are type of deployment and

prior commitment to an underlying OS

Ð Apache on UNIX and Linux predominates in
universities, research institutes and for virtual
hosting setups Ðhas majority of hosted domains

Ð Netscape/iPlanet used to have large enterprise
market almost to itself Ðnow it is nearly gone

Ð IIS started with smaller companies, often as part of
LAN server, but has now taken over Sun/Netscape�s̀
leading role in the enterprise

CSE 135 Server Side Web Languages Lecture # 3

Sizing a Web Server

¥ Sizing is process of determining the physical
resources required to meet anticipated demand

¥ Processing power and memory are not typically
a problem for the Web server
Ð Basic HTTP server job of fetching files is not

processor intensive
Ð Resource constraints on the box probably an effect of

other server -side mechanisms
¥ Automated session management by app servers

¥ Manipulation of large database queries

¥ Lots of non-optimized code in Web applications

¥ Network concerns concerns! (next slide)

CSE 135 Server Side Web Languages Lecture # 3

Sizing a Web Server ÐNetwork Bottlenecks

¥ Network bottlenecks
Ð Available bandwidth should accommodate max HTTP operations

(�lhits�z) under peak load

Ð Could you figure out given an average file size a peak load for a
T1 line?

¥ So then would file size be an important consideration for Web
design in a high traffic site?

Ð Bandwidth sizing should be adjusted based on your actual
request frequency and size

¥ Assume peaks at triple or more the average loads

Ð Also watch out for collisions and overloading of routers,
switches, hubs and NICs on the network

CSE 135 Server Side Web Languages Lecture # 3

Common Web Server Tasks

¥ Set-up / install Web server
Ð Done here but usually set name, IP, root directories

Ð Define protected directories with basic authentication, etc.

Ð Configure error pages for 404 errors, 403 errors, etc.

Ð Turn off directory browsing maybe?

Ð Small security changes (remove or modify server header)

Ð Set-up aliases and other redirects

Ð Tune for performance

Ð Monitor for security, performance and usage
¥ Logs

Ð Support Web applications
¥ Installation of frameworks, files, etc.

Some Examples using IIS

¥ The following pictures show common screens for
an older version of IIS that made it easy to see
everything.
Ð Modern versions have the same features though

presented a bit more piecemeal
Ð We should study these screens because as you look at

an Apache.conf file the ideas are the same.

¥ Understand Web servers are just HTTP servers
once you know the HTTP lifecycle what web
servers do is pretty much the same (speed and
ease of admin may change though)

CSE 135 Server Side Web Languages Lecture # 3

Server Example: IIS - Main Settings Dialog

CSE 135 Server Side Web Languages Lecture # 3

Server Example: IIS - Directory Configuration

CSE 135 Server Side Web Languages Lecture # 3

Server Example: IIS - Default Documents

CSE 135 Server Side Web Languages Lecture # 3

Server Example: IIS - Error Messages

CSE 135 Server Side Web Languages Lecture # 3

Server Example: IIS - Access Control

CSE 135 Server Side Web Languages Lecture # 3

Server Example: IIS ÐLog Files

CSE 135 Server Side Web Languages Lecture # 3

Server Example: IIS ÐHeaders and Misc.

CSE 135 Server Side Web Languages Lecture # 3

Server Example: IIS ÐMIME Types

So you see here that File
extensions map to
MIME types which is
really what the user
agent cares about when
deciding what to do with
an HTTP response

File extensions are often
the key to how a server-
side scripting engine
works

CSE 135 Server Side Web Languages Lecture # 3

Server Example IIS ÐApp Filter List

CSE 135 Server Side Web Languages Lecture # 3

Organization- Virtual and Physical Site Structure

¥ Think of a site as having not one structure but two Ð
virtual and physical
Ð Virtual structure is described by the URLs used to request

resources from the site
¥ This is the public view of the site Ðthe site as visitors will see it

when they browse to it

Ð Physical structure is the organization of the files and directories
in the file system on the host machine �s̀ hard disk

¥ This is the private view of the site seen only by you and those users
you choose to give access

Ð It will become obvious why this distinction is necessary to keep
things straight

CSE 135 Server Side Web Languages Lecture # 3

Configuring Virtual -Physical Mappings

¥ The Document Root
Ð A directory in the file system of the host machine

where the Web server looks for the files that
constitute the Web site

¥ Also called the root directory

Ð Often given an index or default document that serves
as the homepage of the site.

Ð Corresponds to the �l/ �zat the end of hostname
portion of the URL:

¥ http://www.foo.com / index.html (virtual)

¥ Ex: /var/www / index.html (physical)

¥ Ex: C:\inetpub \wwwroot \index.html (physical)

CSE 135 Server Side Web Languages Lecture # 3

¥ Notice how the hostname portion of the URL maps to
the same place pointed to by the physical path that lies
to the left of the the �l/ �zrepresenting the document
root
Ð The URL is virtual to the left of the document root, but it seems

to be physical to the right of the document root

¥ In fact, a URL is purely virtual Ðthere is no guarantee
that the path to the right of the document root looks
this way on disk
Ð Could http://www.foo.com/index2.html map to

C:/foo/a/b/c/myfile.html?

Ð Sure Ðyou can do this with aliases, redirects, local OS mappings,
all sorts of stuff

Configuring Virtual -Physical Mappings

CSE 135 Server Side Web Languages Lecture # 3

Configuring Virtual -Physical Mappings

¥ A virtual directory or alias in the URL path preempts the
lookup in the document root

¥ This extends the virtual structure to the right of (or
�lbelow�z) the root �l/ �zin the URL path
Ð http://www.foo.com/ virtual/ index2.html

Ð /htdocs/ physical/ index2.html

Ð You can (and should) take advantage of this virtual/physical
distinction to:

Ð Preserve the site�s̀ URL scheme even if the physical structure
has to change

Ð Avoids broken links due to site expansion/revision

Ð Manage directory and file locations in ways that minimize
security risks and facilitate backup procedures

Ð Allow developers to keep relative URLs in source code simple

CSE 135 Server Side Web Languages Lecture # 3

Virtual Hosting

¥ We know the hostname part of the URL is a
virtual locator for files that live (physically) in a
site�s̀ document root

¥ The idea of virtual hosting takes this a step
further by allowing a single server to host many
domains, each with its own document root

¥ Two methods of virtual hosting
Ð Old way: multiple IP addresses per server

Ð New way: name-based using host headers

CSE 135 Server Side Web Languages Lecture # 3

Managing Users and Hosts

¥ Users (developers) will need remote access
allowing them to transfer files to and from the
site�s̀ physical structure

¥ FTP (and other file transfer mechanisms) allow
the administrator to restrict this access
Ð to sub-sections of the site

Ð by user account or client IP

¥ These restrictions should be backed up by
access control lists on the directories that
enforce the �lprinciple of least access �z

CSE 135 Server Side Web Languages Lecture # 3

Managing Users and Hosts

¥ Similar rules apply to managing access to the
Web site itself by visitors
Ð ACLs in the Web site�s̀ physical file structure should

be set to the minimum required by the Web server to
serve the resources on the site

¥ This gets tricky with server side programming

Ð If the Web site (or part of it) does not need to be
available for anonymous access from everywhere
then users, groups, hosts and IPs should be restricted

Ð HTTP Authentication can also be employed to
require make all or part of a site private and
require login

CSE 135 Server Side Web Languages Lecture # 3

Managing Users and Hosts

¥ Although HTTP authentication now offers
safeguards like checksums and password
encryption, it is not very secure
Ð Lack of end-to-end encryption of the entire message

transmission makes hijacking, scanning and spoofing
easy

¥ If all or part of the site requires authentication
and serious security for user �s̀ login credentials,
form based authentication over SSL is the only
choice

CSE 135 Server Side Web Languages Lecture # 3

Basic SSL Configuration

¥ Initiate an application for a certificate from a
recognized Certificate Authority (CA)
Ð The site (domain) owner will have to prove they are

who they say they are

¥ Create a Certificate Signing Request (CSR)
Ð Contains the site �s̀ Public Key and matches up with a

Private Key that is created simultaneously and stored
on the server

¥ Submit the request to the CA and pay up
¥ Retrieve the certificate and install it
¥ Test the certificate with an HTTPS request

CSE 135 Server Side Web Languages Lecture # 3

Supporting Web Applications

¥ Comparing static and dynamic sites
¥ Static site demands

Ð Few performance demands on Web server
¥ Serving files is light work

¥ Caching is easy to do

¥ State management probably not an issue

Ð Few security risks
¥ Tight permissions possible

¥ No interaction with other executables or processes

Ð Developer support relatively simple
¥ Basic access control and monitoring

CSE 135 Server Side Web Languages Lecture # 3

Supporting Web Applications, cont.

¥ Demands introduced by dynamic page
generation on server side
Ð Significantly heavier performance demands

¥ Code execution

¥ Database access

¥ Caching more difficult to do

¥ Complex state management schemes

Ð Security risks go way up
¥ Higher level permissions required

¥ Buffer overflows, code injection, hijacking

Ð Significantly more complex developer support
¥ Install, maintain application environments

¥ Potentially help debug the actual applications

CSE 135 Server Side Web Languages Lecture # 3

A Digression on Web Server Internals

¥ Server-side processing makes a simple model
significantly more complex

¥ Basic internal request/response cycle
Ð Read request
Ð Do authentication if any

Ð Process other headers

Ð Map URL to physical path
Ð Read file or retrieve cached response

Ð Send response

Ð Log
Ð Cleanup

CSE 135 Server Side Web Languages Lecture # 3

Web Server Internals, cont.

¥ Server programming adds a new dimension
Ð Read request, set up internal data structures
Ð Do authentication if any

Ð Process other headers

Ð Map URL to script or program
¥ Script or program diverts request handling into new code

paths

¥ Server must wait for result of processing before it finds out
what it is supposed to send back

Ð Send response

Ð Log

Ð Cleanup

CSE 135 Server Side Web Languages Lecture # 3

3 Server-Side Programming Models

¥ What happens when the request gets diverted
from the server �s̀ own internals?
Ð Classic CGI model Ð�lfork and exec�z

¥ Web server creates new child process, passing it request
data as environment variables

¥ CGI script issues response using standard I/O stream
mechanisms

Ð Server API model
¥ Web server runs additional request handling code inside its

own process space

Ð Web application frameworks
¥ Web server calls API application, which may manage request

within its own pool of resources and using its native objects

CSE 135 Server Side Web Languages Lecture # 3

3 Server-Side Programming Models

Classic CGI Aþfork and exec Aÿ

Server API running inside
Web server Aûs address space

Web application framework
running inside Web server
process but managing its own
pool of resources via IPC

Model 4?

The Web Server is the app / the
app is the Web server?

Common in the NodeJS world our code defines routes and the app is
the server. This is both a good idea (limited surface area) and an insane
idea (you have no idea what serving HTTP really means) Suggestion;
Use Node behind a HTTP proxy or in a co-server model

Interestingly this is an old model that was abandoned and is now back

CSE 135 Server Side Web Languages Lecture # 3

3 Server-Side Programming Models

¥ Each model has its pros and cons
Ð Classic CGI model

¥ Pro: isolation means easiest in principle to secure, least damaging
if something goes wrong

¥ Con: isolation makes it slow & resource intensive

Ð Server API model
¥ Pro: very fast & low overhead if written properly

¥ Con: hard to write; blows up server if done wrong

Ð Web application frameworks
¥ Pro: ideally combines efficiency of API model with safety of CGI;

adds helpful encapsulation of routine tasks like state management

¥ Con: built -in tools can be resource hogs in wrong hands; ease of use
may encourage carelessness

CSE 135 Server Side Web Languages Lecture # 3

3 Server-Side Programming Models

¥ Many examples of each
Ð Classic CGI

¥ Scripts written in Perl (or whatever)

¥ Programs written in C (or whatever)

Ð Server API
¥ Apache modules

¥ ISAPI filters and extensions

Ð Web application frameworks
¥ All descended from Server Side Includes (SSI), original

�lparsed HTML�zsolution that allowed interspersing of
executable code with markup

¥ ASP, ASP.NET, Cold Fusion, JSP/Servlets, Python, PHP, etc.

CSE 135 Server Side Web Languages Lecture # 3

Server Sizing with Dynamic Content

¥ In high traffic scenarios with dynamic pages, when
bandwidth is plentiful, disk access can be the major
bottleneck
Ð Especially problematic when backend databases are being

accessed to build pages

¥ Reading from disk always slower than reading from
memory, thus add tons of memory? ÐMemcache?

¥ A sliding scale of solutions
Ð Use fast disk controllers (SCSI) or SSD (memory again!)

Ð Exploit caching mechanisms to keep as much data as possible in
memory

Ð Add hardware! (and give it specialized roles)

CSE 135 Server Side Web Languages Lecture # 3

A complex server farm configuration

Load
Balancers

Reverse
Proxies

with
memcache

Web and
application

Servers

DB Clusters

CSE 135 Server Side Web Languages Lecture # 3

Web Applications and Site Structure

¥ With server-side programming it becomes even more
important to treat the URL as virtual rather than
physical
Ð Each file called by an URL can generate many different

responses

Ð At the extreme, some methodologies call for a single file to
generate all pages in the site

Ð Many different physical resources, including database tables and
additional files (includes) might be required to produce one
response

Ð Filters or modules might preempt or rewrite certain URLs
altogether

CSE 135 Server Side Web Languages Lecture # 3

Web Analytics ÐOverview

Ð Log File Formats, Configuration, Management
Ð Why do Log Analysis?

¥ Traffic Analysis (internal and external)

¥ Quality of Service Analysis

¥ Security audits

¥ Performance analysis

Ð Statistics, Tracking, Reporting
¥ Basic Concepts

¥ Limitations and Caveats

¥ Free and commercial tools

Ð Setting up a Robust Logging System

CSE 135 Server Side Web Languages Lecture # 3

Log File Formats

Ð Apart from error logs, Web servers generate �laccess�zor
�ltransfer �zlogs that record per request activity

Ð Two formats
¥ Common Logfile Format (CLF)

Ð remotehost rfc1430 authuser [date]
�lrequest �z status bytes

Ð Combined Logfile Format adds referer and user -agent

¥ Extended Logfile Format (ELF)

Ð Two required directives (Version and Fields) at the top tell
consumers of the log file how to parse it

È#Version: 1.0
È#Fields: date time c - ip sc - bytes

time - taken cs - version

CSE 135 Server Side Web Languages Lecture # 3

More on Extended Logfile Format

Ð date and time are standard fields

Ð Beyond those, the administrator is free to specify a wide range
of extended fields

¥ In IIS: c- ip cs - username s - sitename s - computername s -
ip s - port cs - method cs - uri - stem cs - uri - query sc -
status sc - win32 - status sc - bytes cs - bytes time - taken
cs - version cs - host cs(User - Agent) cs(Cookie)
cs(Referer)

Ð Apache has particularly customizable formatting
¥ Arbitrary ordering of fields

¥ interspersing of text and formatting

¥ Conditional logging using environment variables or regular
expressions on the URL

¥ Routing of certain entries to specialized logs

CSE 135 Server Side Web Languages Lecture # 3

Managing Logs ÐBest Practices

Ð Log everything you need, but not what you do not
need

Ð Rotate log files at intervals appropriate for your
analysis and archiving requirements

Ð Write logs to a convenient, distinct, ample and
secure location

Ð For heavy duty analysis on high traffic sites, consider
using dedicated database server(s)

¥ Records can be inserted directly or asynchronously

¥ Analysis carried out without burdening site

¥ Especially necessary for analysis of logging that covers
extended time periods (i.e., longer than a single day)

CSE 135 Server Side Web Languages Lecture # 3

Why do Log Analysis? (Traffic)

Ð Optimize content or ad pricing or positioning, assess popularity
of site areas/features

¥ Most popular pages
¥ Top entry point pages

Ð Billing in hosting environment or resource allocation in
enterprise environment

¥ Most active domains

Ð Search engine activity
¥ Indexing and query frequency

Ð Campaign tracking
¥ Top referring sites/domains/URLs
¥ Time/event based spikes or dips

Ð Audience analysis
¥ IP geography, language preference, client host type (.com, .edu,

.org, etc.)

CSE 135 Server Side Web Languages Lecture # 3

Why do Log Analysis? (QoS)

ÐOptimize first views, adjust site structure
¥ Top entry point pages

ÐAdjust for browser capabilities
¥ User agents

ÐIdentify points of failure
¥ Error codes and counts (404, 500)

ÐIdentify navigation patterns and frequent exit
points

¥ IP, referrer and cookie tracking
¥ Not easy to do, but maybe worth the effort for

finding out if users are aborting an application
path early

CSE 135 Server Side Web Languages Lecture # 3

Why do Log Analysis? (Security)

ÐIdentify �lleaching�zor �lscraping�zactivity
¥ Most requested files
¥ IP, referrer and cookie tracking
¥ Entry point pages
¥ Bandwidth utilization

ÐTrack sources and methods of reconnaissance
attempts, exploits and attacks

¥ Error codes
¥ Attempted access of shells, scripts, etc.
¥ Attack and worm signatures
¥ Long/malformed request URLs
¥ Unusually large request entities (POST)

CSE 135 Server Side Web Languages Lecture # 3

Why do Log Analysis? (Performance)

ÐVerify or update Web server sizing estimates
by using actual data

ÐIssue or verify bandwidth bills
¥ Bytes sent (within given time frame)
¥ Request frequencies, especially peaks and valleys

over given periods of time

ÐAssess caching efficiency
¥ Harder to do but possible by looking at

(dependent) requests per page and 304 response
codes

CSE 135 Server Side Web Languages Lecture # 3

Statistics, Tracking, Reporting

Ð Basic concepts
¥ Counting hits versus counting page views

¥ Distinguishing page views from hits

Ð File name

Ð File type

Ð Web server response code (to exclude errors)

Ð Client host (if excluding internals)

¥ Counting unique visitors

Ð Sets of page views attributable to one user

Ð MUCH harder to do and IMPOSSIBLE TO DO RELIABLY, no
matter what anyone tells you

Ð Requires a unique identifier to serve as a proxy for
physical presence of the virtual visitor

CSE 135 Server Side Web Languages Lecture # 3

Statistics, Tracking, Reporting, cont.

Ð Counting Unique Visitors, continued
¥ Client IP is easiest identifier to use, but also least reliable

Ð Dynamic IPs, proxies with NAT

¥ Login is highly reliable (except for sharing) but limited in
applicability to sites/sections where it won �t̀ discourage
users

¥ Cookies (transparently placed) are the best all -purpose
compromise, but still have limits

Ð Must have backup if disabled on client

Ð Still not guaranteed to be persistent

Ð Bound to machine rather than user

Ð Can not be shared across domains

CSE 135 Server Side Web Languages Lecture # 3

Statistics, Tracking, Reporting, cont.

Ð Be aware of limitations and caveats when counting
requests and page views

¥ Browser and proxy caching stop requests from ever reaching
the server and its logs, deflating actual page views by actual
users

Ð Can be partially mitigated by use of HTTP cache control
headers, but this is neither guaranteed to work nor cost -
free in bandwidth terms

Ð A good compromise is to flag pages for non caching but
take advantage of caching for relatively persistent
images

¥ Request counts will also be inflated by bot and script activity
(desirable or undesirable)

CSE 135 Server Side Web Languages Lecture # 3

Statistics, Tracking, Reporting, cont.

Ð Tracking the elusive �lVisit�z
¥ How long a unique visitor spends on the site before exiting

¥ The concept has tremendous potential utility for marketing
and quality of service analysis

¥ Stateless nature of HTTP makes it next to impossible to
determine with any degree of accuracy 100% accurate visit
time

¥ What is commonly done is to use rule of thumb such as �la
series of page requests by a visitor without 30 consecutive
minutes of inactivity �zÐcommon assumption

Ð Maybe JavaScript can be used to help though?

Ð Otherwise for session length remember it is totally
arbitrary so you can make longer or shorter visit
averages by adjusting this assumption

CSE 135 Server Side Web Languages Lecture # 3

Analytics Beyond Logs

¥ JavaScript Analytics (ex. Google Analytics) is far more
popular than log based
Ð Pros ÐDegree of detail, access to log problems, ease of Web

types adding tracking, consolidation of tracking data

Ð Cons ÐRequires JavaScript (execution limits particularly bots,
failures, load time concerns)

¥ Network Tap based systems also exist which provide
insight into delivery

¥ Given the three sides of the Web equation one wonders
if this isn �t̀ again a question of not versus but working
together for a full view

CSE 135 Server Side Web Languages Lecture # 3

Dealing with Bots and Spiders

Ð Automated User Agents
¥ Bots, Robots, Crawlers, Spiders, etc.

¥ Most capable of automated site traversal

¥ Bots come in both benign and malign forms

Ð Search engine indexers, link checkers, monitors

Ð Spam bots, leechers & scrapers, attack bots

¥ Benign bots usually (not always!) announce themselves with unique
User Agent headers

Ð Frequently updated lists of common search agent bots is
available online

Ð �lgooglebot�zand other well -known variations

¥ Benign bots are usually (not always!) well -behaved

Ð Crawl at rates well below DoS levels

Ð Obey Robot exclusion directives

CSE 135 Server Side Web Languages Lecture # 3

Special Handling for Search Agents

ÐWhat to do about indexing bots and dynamic
pages?

¥ May need to exclude them to prevent indexing of
content that will vary per user or request

¥ May need to provide spider-friendly versions of
dynamic pages to expose content to desired
indexing

¥ Alternate, search -optimized pages can be helpful
but proceed with caution! Ðthat could be black
hat

ÐBots can impersonate UAs to prevent/punish
spamming (bait pages, stealth)

ÐContent should not vary, only presentation

CSE 135 Server Side Web Languages Lecture # 3

Using the Robot Exclusion Protocol

ÐPlace a robots.txt file in the site �s̀ document
root

ÐCareful: don �t̀ show your soft spots? Or maybe
you want to?

ÐWell-behaved bots will request this first, and
obey its directives

#sample robots.txt file

User - Agent: *

Disallow: /newtoday

Disallow: /downloads

User - Agent: newsbot

Disallow: /pressrreleases

CSE 135 Server Side Web Languages Lecture # 3

Beyond the Robot Exclusion Protocol

Ð For controlling unfriendly bots, robot exclusion is
insufficient

Ð Access control is hard to do, since neither IP ranges
nor User Agents are reliable identifiers of
unfriendlies

Ð Access control based on traversal pattern and rate is
possible

¥ Using IP and request path against time elapsed it should be
possible to identify a traversal and dynamically block it

¥ Nontrivial to program and subject to countermeasures if it
catches on

¥ Passive bot detection is certainly an open area for
research Ðnotice all the CAPTCHAS as well

CSE 135 Server Side Web Languages Lecture # 3

Server and Site Monitoring

Ð Monitoring Site Availability
¥ Content monitors request portions of key pages and compare

actual to expected results to verify that site is alive and
working properly

¥ Application monitors submit form data and analyze result to
verify backend systems are up

Ð Monitoring Server Uptime
¥ Service monitors warn when services go down or become

unreachable

¥ Automated restart can be attempted

Ð All monitors usually alert via email, pager, SMS

Ð Thresholds can be set to allow for transient errors &
delays, or warn of degrading performance

CSE 135 Server Side Web Languages Lecture # 3

Server and Site Monitoring, cont.

Ð More active monitoring is also possible
Ð Can be useful especially in testing and diagnostic

situations
¥ Process monitors allow for isolation of specific processes to

pinpoint trouble spots, especially resource bottlenecks and
leaks

¥ Performance monitors , especially in conjunction with stress
tools that simulate traffic, help in accurate dimensioning

¥ Network monitors allow examination of packet level data
and protocol details for uncovering connection related
problems

Ð We are currently seeing finally a rise in DevOpsto
mind the gaps between apps, server, and network

CSE 135 Server Side Web Languages Lecture # 3

Server Tuning

¥ Many recommended optimizations are highly
specific to Web server vendor/version

¥ Some common elements
¥ Disable reverse DNS lookups in logging
¥ Shorten connection timeouts (trades some bandwidth for

server resources)
¥ Remove unneeded server API modules
¥ Minimize other application overhead
¥ Optimize process & thread pools and limits

¥ WeÕll see later in many ways server isn Õt the
problemÉthe client is . Performance issues are
mostly client side it turns out.

