
JavaScript 1 2JavaScript 1 2

Chapter 2
JavaScript Core Features - Overview

Adapted from
J S i t Th C l t R f 2nd EditiJavaScript: The Complete Reference 2nd Edition

by
Thomas Powell & Fritz Schneider

© 2004 Thomas Powell, Fritz Schneider, McGraw-Hill

JavaScript 1 2

Basic FeaturesBasic Features
• Script Execution orderp

– Top to bottom
– <head> before <body>
– Can’t forward reference outside a <script> tag

• JavaScript is case sensitive
HTML is not XHTML is– HTML is not, XHTML is

– “Camelback” style document.lastModified
– IE’s JScript is a little less case sensitive than standard p

ECMAScript and Netscape’s JavaScript
– Remember onClick, ONCLICK, onclick doesn’t

count since that is HTMLcount since that is HTML

JavaScript 1 2

Basic Features ContdBasic Features Contd.

• WhitespaceWhitespace
– Whitespace is generally ignored in JavaScript

statements and between JavaScript
statements but not always consider

• x = x + 1 same as x =x + 1
• s = typeof x; is same as s=typeof x but it not the• s = typeof x; is same as s=typeof x but it not the

same as s=typeofx; or s= type of x;
– Return character can cause havoc
– Given white space support by JavaScript

some developers favor “crunching”

JavaScript 1 2

Basic Features ContdBasic Features Contd.

• StatementsStatements
– A script is made up of individual statements
– JavaScript statements are terminated byJavaScript statements are terminated by

returns or semi-colons (;)
– So x = x+1; same as x = x+1

alert(x); alert(x)
– Prefer to use semi-colons because if you

reduce returns you run into problemsreduce returns you run into problems
x=x+1 alert(x) throws an error while
x=x+1;alert(x); does not.()

JavaScript 1 2

BlocksBlocks
• To group together statements we can create a

bl k i l b { } I thiblock using curly braces { }. In some sense this
creates one large statement

• Blocks are used with functions as well as larger
decision structures like if statementsdecision structures like if statements

function add(x,y) if (x > 10)
{ {

var result = x+y; x= 0;
return result; y = 10;

} }} }

JavaScript 1 2

VariablesVariables
• Variables store data in a programp g
• The name of a variable should be unique well

formed identifier starting with a letter and
f ll d b l di ifollowed by letters or digits

• Variable names should not contain special
characters or white spacecharacters or white space

• Variable names should be well considered
– X versus sumX versus sum
– Some rules of programming might not follow on the

Web?

JavaScript 1 2

Variables ContdVariables Contd.

• Define a variable using the var statementDefine a variable using the var statement
– var x;

• If undefined a variable will be defined on its firstIf undefined a variable will be defined on its first
use

• Variables can be assigned at declaration timeg
– var x = 5;

• Commas can be used to define many variables y
at once
– var x, y = 5, z;

JavaScript 1 2

Basic Data TypesBasic Data Types
• Every variable has a data type that indicates what kind of y yp

data the variable holds
• Basic data types in JavaScript

– Strings (“thomas”, ‘x’, “Who are you?”)
• Strings may include special escaped characters

– ‘This isn\’t hard’
S f• Strings may contain some formatting characters

– “Here are some newlines \n\n\n and tabs \t\t\t yes!”

– Numbers (5, -345, 56.7, -456.45677)
• Numbers in JavaScript tend not to be complex (e.g. higher math)

– Booleans (true, false)

• Also consider the values null and undefined as typesyp

JavaScript 1 2

Weak TypingWeak Typing
• JavaScript is a weakly type language meaning

that the contents of a variable can change fromthat the contents of a variable can change from
one type to another.
– Some languages are more strongly type in that you

d l h f i bl d i k i h imust declare the type of a variable and stick with it.
• Example of dynamic & weak typing a variable

initially holding a string can later hold a numberinitially holding a string can later hold a number
x = "hello"; x = 5; x = false;

• While weak typing seems beneficial to a
programmer it can lead to problems

JavaScript 1 2

Type ConversionType Conversion
• Consider the following example of weak typing in

action
document.write(4*3);
document.write("
");
document.write("5" + 5);
document.write("
");();
document.write("5" - 3);
document.write("
");
document.write(5 * "5");

• You may run into significant problems with type
conversion between numbers and strings use
f ti lik Fl t() t d l ith thfunctions like parseFloat() to deal with these
problems
– Prompt demo p

JavaScript 1 2

Dealing with TypeDealing with Type
• You can also use the typeof operator to figure yp p g

out type
var x = "5";
alert (typeof x);(yp);

• Be aware that using operators like equality or
even + may not produce expected results

x 5;x=5;
y = "5";
alert(x == y)

Produces a rather interesting result We see theProduces a rather interesting result. We see the
inclusion of a type equality operator (===) to deal
with this

JavaScript 1 2

Composite TypesComposite Types
• JavaScript supports more advanced types made

up of a collection of basic typesup of a collection of basic types.
• Arrays

– An ordered set of values grouped together with a
i l id tifisingle identifier

• Defining arrays
– var myArray = [1,5,1968,3];y y [, , ,];
– var myArray2 = ["Thomas", true, 3, -
47];

– var myArray3 = new Array();– var myArray3 = new Array();
– var myArray4 = new Array(10)

JavaScript 1 2

ArraysArrays
• Access arrays by index value

– var myArray = new Array(4)a y ay e ay()

– myArray[3] = "Hello";

• Arrays in JavaScript are 0 based givenArrays in JavaScript are 0 based given
– var myArray2 = ["Thomas", true, 3, -47];
– myArray2[0] is “Thomas” myArray[1] is true and so onmyArray2[0] is Thomas , myArray[1] is true and so on
– Given new Array(4) you have an array with an index

running from 0 – 3
– To access an array length you can use

arrayName.length
• alert(myArray2 length);• alert(myArray2.length);

JavaScript 1 2

ObjectsObjects
• Underneath everything in JavaScript are objects.y g p j
• An object is a collection of data types as well as

functions in one package
• The various data types called properties and functions• The various data types called properties and functions

called methods are accessed using a dot notation.

objectname propertynameobjectname.propertyname

• We have actually been using these ideas already, for
example document write(“hello”) says using theexample document.write(hello) says using the
document object invoke the write() method and give it
the string “hello” this results in output to the string

JavaScript 1 2

Working with ObjectsWorking with Objects
• There are many types of objects in JavaScript

– Built-in objects (primarily type related)
– Browser objects (navigator, window, etc.)
– Document objects (forms, images, etc.)

U d fi d bj t– User defined objects
• Given the need to use objects so often shortcuts are

employed such as the with statement
ith (d t)with (document)

{
write("This is easier");
write("This is even easier");

}}
• We also see the use of the short cut identifier this

when objects reference themselves

JavaScript 1 2

Expressions and OperatorsExpressions and Operators
• Make expressions using operators in JavaScriptp g p p
• Basic Arithmetic

– + (addition), - (subtraction/unary negation), /
(division), * (multiplication), % (modulus)

• Increment decrement
++ (add one) (subtract one)– ++ (add one) -- (subtract one)

• Comparison
– >, <, >=, <= , != (inequality), == (equality), === (type, , , , ! (inequality), (equality), (type

equality)
• Logical

– && (and) || (or) ! (not)

JavaScript 1 2

More OperatorsMore Operators
• Bitwise operators (&, |, ^)p (|)

– Not commonly used in JavaScript except maybe
cookies?

– Shift operators (>> right shift, << left shift)Shift operators (right shift, left shift)
• String Operator

– + serves both as addition and string concatenation
– document.write("JavaScript" + " is " + " great! ");
– You should get familiar with this use of +

• Be aware of operator precedenceBe aware of operator precedence
– Use parenthesis liberally to force evaluations
– var x = 4 + 5 * 8 versus x = (4+5) * 8

JavaScript 1 2

Flow ControlFlow Control

• Basic program execution control handled inBasic program execution control handled in
JavaScript using the if statement

• if (expression) or if (expression)
true-case true-case;

else
false-case;false case;

if (x > 10)

alert("x bigger than 10");
else

alert("x smaller than 10");

JavaScript 1 2

More on If StatementsMore on If Statements

• You can use { } with if statements toYou can use { } with if statements to
execute program blocks rather than single
statements

if (x > 10)
{

alert("X is bigger than 10");
alert("Yes it really is bigger");

}

• Be careful with ;’s and if statements• Be careful with ; s and if statements
if (x > 10);

alert("I am always run!? ");alert(I am always run!?);

JavaScript 1 2

Switch StatementsSwitch Statements
• If statements can get messy so you might consider using a switch

i dstatement instead

• switch (condition)
{{
case (value) : statement(s)

break;
…
default: statement(s);

}

Th it h t t t i t t d b ld J S i t• The switch statement is not supported by very old JavaScript aware
browsers (pre-JavaScript 1.2), but today this is not such an
important issue

JavaScript 1 2

Switch ExampleSwitch Example
var x=3;
switch (x)
{
case 1: alert('x is 1');

break;
case 2: alert('x is 2');

break;
case 3: alert('x is 3');

break;
case 4: alert('x is 4');

break;
default: alert('x is not 1, 2, 3 or 4');

} }

JavaScript 1 2

LoopsLoops
• JavaScript supports three types of loops: while, do/while, and for
• Syntax of while:

while(condition)
statement(s)statement(s)

• Example:

var x=0;
while (x < 10)
{
document write(x);document.write(x);
document.write("
");
x = x + 1;

}
d t it ("D ")document.write("Done");

JavaScript 1 2

Do LoopDo Loop

• The difference between loops is often when theThe difference between loops is often when the
loop condition check is made, for example

var x=0;
ddo
{
document.write(x);
x = x + 1;x = x + 1;

} while (x < 10);

I th f d l th l l t• In the case of do loops the loop always executes
at least once since the check happens at the
end of the loopend of the loop

JavaScript 1 2

For LoopFor Loop
• The most compact loop format is the for loop p p p

which initializes, checks, and
increments/decrements all in a single statement

for (x=0; x < 10; x++)
{{
document.write(x);

}

• With all loops we need to exercise some care to
avoid infinite loops. See examplep p

JavaScript 1 2

For/In LoopFor/In Loop
• One special form of the for loop is useful with looking at p p g

the properties of an object. This is the for/in loop.

f (P i i d)for (var aProp in window)
{
document.write(aProp)
document.write("
");

}

• We will find this construct useful later on when looking at
what we can do with a particular object we are usingp j g

JavaScript 1 2

Loop ControlLoop Control
• We can control the execution of loops with two statements: p

break and continue
• break jumps out of a loop (one level of braces)
• continue returns to the loop increment• continue returns to the loop increment
var x=0;
while (x < 10)
{

x = x + 1;
if (x == 3)
continue;

document.write("x = "+x);
if (x == 5)
break;

}
document.write("Loop done");

JavaScript 1 2

FunctionsFunctions
• Functions are useful to segment code and create a set of statements

th t ill b d d i Th b i t ithat will be used over and over again The basic syntax is

function name(parameter list)
{{
function statement(s)
return;

}}

• For example
function add(x, y)function add(x, y)
{

var sum = x + y;
return sum;

}}

JavaScript 1 2

Functions ContdFunctions Contd.
• We can then invoke a function using the function name g

with ()’s
var result = add(2, 3);

• We can also pass variable values as well as literals
var a = 3, b=5;
var result;var result;
result = add(a,b);

• Variables are passed to function by value so you must
use return to send things back.

• You can return a value or not from a function and you
can have as many return statements as you likecan have as many return statements as you like

JavaScript 1 2

Input/Output in JavaScriptInput/Output in JavaScript
• Special dialog formsp g

– Alert
• alert("Hey there JavaScript coder! ");

– Confirm
• if (confirm(‘Do you like cheese?’)

alert("Cheese lover");
else
alert("Cheese hater");

– Prompts
• var theirname = prompt("What’s your name? ", "");p p (y)

JavaScript 1 2

Input/Output in JavaScript ContdInput/Output in JavaScript Contd.

• Writing to the HTML documentg
– document.write()
– document.writeln()()

• Writing should be done before or as the document loads.
• In traditional JavaScript the document is static after that,

though with the DOM everything is rewritable
• Since we are writing to an (X)HTML document you maySince we are writing to an (X)HTML document you may

write out tags and you will have to consider the white
space handling rules of (X)HTML

JavaScript 1 2

Comments and FormattingComments and Formatting

• When writing JavaScript commenting is usefulWhen writing JavaScript commenting is useful
• Two methods – C and C++ style

– /* This is a /
multiple line
style comment */

// hi i i l li– // This is a single line comment

• Security concern – who is reading your
comments?comments?

• Formatting for reading or for speed?

JavaScript 1 2

SummarySummary

• JavaScript supports a basic syntax very similarJavaScript supports a basic syntax very similar
to C

• It is a weakly typed languagey yp g g
• It has a limited set of data types
• It is very object flavored but it does not forceIt is very object flavored but it does not force

object-oriented programming on programmers
• It forgoes many features of programming t o goes a y eatu es o p og a g

languages that wouldn’t make sense in the Web
environment (file I/O, complex Math, etc.)

