Today’'sAgenda

eLastTimein CSE 112

* Peter’s Perspective
* What he roughly wantedlast time
* His interpretation of the process
* What hereally wants thistime

* Logistical announcements
* Groups
* Participation Approaches

* Reviewingthe Homework
* Why did we do such a homework?
* Space Shuttle discussion

* The Lecture

Lecture 2

Making a Software Engineer

Where are you?

MASTERY ACHIEVED

You know it

NAIVELY CONFIDENT

You think you know,
but still don’t know
what you don’t know

CLUELESS DISCOURAGINGLY

’ REALISTIC
You don’t know —
what you don’t You know what you

know don’t know

Ll

Facts and Fallacies of
Software Engineering

Robert L. G!ass

The mostimportant factor in improving software
developmentis not the tools and techniques used by
programmers, but the quality of the programmers
themselves

| \

. #)
’ - f//‘é ; . \
I N B .

Example #1

Language experience

Schedule constrant

Data base size

—
=
=
=
=
&
>
=
-
=z
S
-
-
e
=
=

Product complexity

5 1) B

! -

200 2.50 3.00

Software productivity range

Credit: Software Engineering Economics by Barry Boehm

Example #2: 10X Programmers

"...researchers have found 10-fold differencesin productivity and
quality between different programmers with the same levels of
experience”

http://www.construx.com/iox Software Development/Productivity
Variations Among Software Developers and Teams The Orlcn
n of 10x/

The romanticimage of an Gber-programmer is someone who fires
up Emacs, types like a machine gun, and delivers a flawless final
product from scratch. A more accurate image would be someone who
stares quietly into space for a few minutes and then says "Hmm. |
think I've seen something like this before.”

http://www.johndcook.com/blog/2009/12/23/why-programmers-
are-not-paid-in-proportion-to-their-productivity/

KNOWLEDGE{IS POWER

POWERIS NECKBEARD

memegenerator.net

2X, 10X Or 28X?

* Best programmers are Xtimes better than average/worst
programmerswhatXis
* Xgenerally isnt small per the expertsit seemstorange from2, 10,
to 28x or more dependingon the pundits degree of hyperbole.
* Let’s just agreeitis betterto have better programmers
* TAP: "l rather have a coding SEAL team than 5o ‘hacks’in nearly
every situation”

* Whataboutabrute force job?

* Thinkabouthowthe codingSEAL would address this?
* “Code generator, etc.”

Why fight Fact #17

*We embrace the fallacy because what we
dois hard as itis and we want it easier

* Tools and languages are predictable, people
often seem arbitrary and thus are much harder

People are not computers with emotions,
out instead are emotional beings who try to
oe logical or rational. Thisincludes us.

Fact #5 Supports Fact #1

Software tool and technique improvements account for at
most 5-35% percent increase in productivity or quality, not
the order of magnitude benefits promised

* Careful: Hypesters tend to have underlying reasons forthe
hype
* Consulting, books, $ attraction (VC), naivete and wishful thinking

* Sometimesitisahyperbolic meansto an end
« Common marketingapproach to fixing a market is to make a new market

* Can'tbeatthe competitionoralready losttothem
* Rename/rebrandexisting idea and claim itis all new

* We like to believe the fantasy, we wish it were true

* Less work more gain! 6 min abs, how about 3min abs

Fact #6 isn't acknowledge enough

Learning a new tool, language, library,
technique, etc. actually lowers productivity
and quality initially. The gains come only later

My Related Fact: There isalways another tool! Because of thisfactit
is easy to always be chasing the next best thing!

* We talk a lot about tools, evaluate lots (usually too few),
adopt/buy anumber of them, initial use some, and very
rarely adoptmany longterm!

From the “Joke” Part of Lecture 1

A “Joke” for Lecture 2

Learning a Technology

Expert / Veteran,

First big project, found suitable
o~ discovery of flaws workarounds or
Inmql and limitations. niche roles to
learning employ the tech.

curve.

Awesome little
demos, this thing
is the best!

fime, experience

Sadly Not a Joke

“I SPEND A LOT OF TIME ON THIS TASK.
T SHOULD WRITE A PROGRAM AUTOMATING IT!™

THEORY:

WRITING~
CODE

Programmer Master Thyself

* "When allis said and done, the ultimate factorin software
productivity is the capability of the individual practitioner”

* If thisistrue, then our goalisto make the individual practitioners
betterright!?

* Unfortunately: Itis quite difficult to eentrelinfluence the
improvementothers

* We have a fighting chance with ourselves so we should
start there!

pro.gramemer
n. [proh-gram-er]
an organism that

turns caffeine and
pizza into software

Postel’s Law forYourself

* Robustness principle

* “Be conservative in what you do, be
liberal in what you accept from
others (often reworded as "Be
conservative in what you send, be
liberal in what you accept").

* Roughly applied to oureffort you
can controlwhatyoudoand
shouldn’t contribute to the
"mess” but need to be flexible
with what others dosince they
might give you "mess”

* This seemsto be a goldenrule far
beyond computing!

Q: How to make a better programmer?
A: Practice!

* The adage practice makes perfectis clearly not a programming
specificidea
* Example: | want to play the guitar
. Eeguirement: Lots of time, need to practice, play chords, play songs
a

ly many times, etc.

* If appliedtothe act of creatingideas like coding it suggests you
neg to write lots of bad code before you can write aTittle great
code

* Longheld in writing - the “shitty first draft”
* Don't forget the rewrite (or in our case refactor!)

* 10,000 hours then!?
* http://www.wisdomgroup.com/blog/10000-hours-of-practice/

e Ornot

* http://www.businessinsider.com/new-study-destroys-malcolm-
gladwells-10000-rule-2014-7

Ok, so what is my ‘guitar’?

* As a coderyour'guitar’is made up of your coding tools
* Computer
* Monitor(s)
» Keyboard
* OS
* Editor/IDE
* Language
* Framework

* Misc. Tools—Debuggers, Build Tools, Syntax Analyzers, etc.*

* * Hesitatethe break out since they are often part or heavily dictatedby the
IDE, framework

So what's your Trigger

https://en.wikipedia.org/wiki/Trigger (guitar)
https://www.youtube.com/watch?v=b6IBotrJoJU

Trigger Doesn't Work Without...

You missed the big one!

* You!
* Your brain
* Your focus
* Your energy
* Your habits

* A large mistake being made by many programmersis
ignoring the biologicallyand emotionallyimposed limits
of yourabilities

Productivity Myths

* Maximum productivity isa myth

* Novice Programmers—believe in utopian work days
* Experienced Software Engineers—acceptreal world days

* Real world agile doesfundamentally agree with this in
thatin the estimation phaseoneis supposedtoincludea
velocity factor (often 0.7) to temper work availability and
estimates

Work Rhythms Part 1
Time of Day

* Many people argue strongly for morning work regardless of discipline
as the most effective approach for productivity increase

* A decentnumber on the other side cite individual energy patterns and
push night work

* Few seem to argue for midday and afternoonwork as it appears that
human cycles and societal patterns don't seem to make thisa great
time for productivity

* My experience suggestsitis ultimately itis somewhat the way a
person iswired. However, rest seemsto resultin better work energy
(thusthe morning or the nap or exercise push) andinterruptions tend
to be abigdeal (thusthe night or early morning) and tiring out plus
food comas are real so wat ?1 out for the afternoon

Work Rhythms Part 2
Length of Work

* The problem with too much particularlyall atonce

* There are cleardiminishing returnsin focus and quality
that have been measured
 Again thisisnotatall specific to programming

* |dea: Employ the Pomodoro Technique
* 2cminson, 5 mins off, work iterations if you like

* Roughly it appears particularly overtime itis better to 2-4
hours focused attention (in flow hopefully) dailythan 8+
hours of diminishingenergy and distraction

Work Rhythms Part 3
Variety and Type of Work

* It is clear that some types of work requires heavy concentration
and othertype of work doesn't

* Try to schedule your efforts for yourenergy and focus
availability

* Cleaning code and making it meet a style guide can be a great
mindless break, but why waste high energy hours doing that?

* Easy to see people do this when they check off the easy itemsin an
issue tracker right away thinking it builds momentum

* Productivity research seems to suggest instead you would do better
tackling harder things first when energy and attention is most plentiful

* Task switch is like "mental crop rotation” when done right and
is distracted and inefficient thrashing when done wrong

Work Rhythms Part 4
Multitasking and Distraction

* Multitasking justdoesn‘t work. Period. Stop.
* Yes we doit, but at our detriment for programmer productivity

* The Internet sings a constantsiren song of better
opportunities and information just over the horizon

* There appearsto be ageneralized fear of being left behind,
whether it be a social update ora new framework

* We can easily trick ourselves to seek out more motivating
things oftenin the guise of beingloopedinto what we are
supposedto be doing

* Examples: Product Hunt, Reddit, Hacker News, TechCrunch, etc.

* We even see people with productivity porn like hab|tsalwayslook|ng forthe
new GtD system, Todo list, Lifehack, etc.!

Yak Shaving !'= Productivity

YAK SHAVING

POINTLESS ACTIVITY NECESSARY TO SOLVE A PROBLEM WHICH SOLVES
A PROBLEM WHICH, SOLVES THE REAL PROBLEM (RECURSIVE)

http://www.hanselman.com/blog/YakShavingDefinedlllGet
ThatDoneAsSoonAsIShaveThisYak.aspx

http://sethgodin.typepad.com/seths blog/2005/03/dont_sh
ave_that.html

Why do we need these?

@Rescue'ﬁme Home Features Pricing Customer Stories Blog Signin @

Find your ideal Anti-Social & O, O

work-life balance.

With so many distractions and possibilities in your
digital life, it's easy to get scattered.

Target Your Digital Distractions

Anti-Social is the amazing app that makes it easy for you fo
RescueTime helps you understand your daily habits so ~ farget and block any distracting website so you can be
you can focus and be more productive. \ more produciive.

Get Started
»

How It Works

—= The NewdJork Times {112 guardian CBCIEWS NewScientist Sunsel

Work Rhythm Part 4
Flow State

* Focused concentration where lots of otherthings melt away
and you often are highly effective (and calm)
* https://en.wikipedia.org/wiki/Flow (psychology)
* http://[psygrammer.com/2011/02/10/the-flow-programming-in-

ecstasy/

* Gettinginto flow state is difficult somewhat like meditation and
requires practice

* Getting knocked out of it is easy with interruptions
* Headphones, private offices over open floor plans
* Distractions — chat, email, the Internet ©

* Generally afew hours of flow is betterthan a day of bouncing
around, even though ?/ou might feel you worked alot you might
a

have accomplished alittle

Living with Imperfection

* Fact: Some daysjustdon‘t go well and youwon’t getinto flow at all

* Very productive good days shouldn't be interpreted as what should
always happen and in fact may only be good relatively or be enabled
because of many “less good” days

* Ultimately you will fail

* You will ...
* write some boneheaded code
* push broken code to master
 overwrite working code
* get very little done
* Addyour own

* Be very careful relating a unproductive day, bad code review,
screwed up algorithm, crash, etc. with your self worth.

Impostor Syndrome

What
| know

What | think What other

other people know people know

Recalibrating my worldview

https://medium.com/@aliciatweet/overcoming-impostor-syndrome-

bdaeogesbecs#.jlsrmjsau

https://www.reddit.com/r/cscareerquestions/comments/atbmmm/how do vou deal w

ith impostor syndrome as a/

Healthy View of Being Novice

This is not Impostor Syndrome
This is Reality for every beginner

—Aratotherpeopretrow—

What accomplished
people in discipline know

Perfectionism

Failure

The Perfectionist’s Guide to Results

www-the-square-peg.com

© Bev Webb 2012

* https://en.wikipedia.org/wiki/Perfectionism_(psychology)

* Thisis actually not a positive trait, some tendencies are but in general
it is very counter productive

* Perfectionismreally seems anti-Agile as agile embraces
continuous improvement

* In my experience perfectionists don‘t ship software often and when
they doit isn't perfect anyway

* Procrastination is related to perfectionism

Programmer Personalities

The 5 types of programmers

July 18th, 2010 — Desktop Development, Web Development (Opinion) 272 Comments »

In My code journeys and programming adventures I've encountered many
strange foes. and even stranger allies. I've identified at least five different kinds of
code warriors, some make for wonderful comrades in arms. while others seem to
foil my every plan.

s

However they all have their place in the pantheon of software development.

—— Without a healthy mix of these different programming styles you’ll probably find
your projects either take too long to complete, are not stable enough or are too
perfect for humans to look upon.

The duct tape programmer

The code may not be pretty, but damnit, it works!
Fixed!
This guy is the foundation of your company. When something goes wrong he w
fix it fast and in a way that won’t break again. Of course he doesn’t care about
how it looks, ease of use, or any of those other frivia/ concerns, but he will make
it happen. without a bunch of talk or time-wasting nonsense. The best way to use
this person is to point at a problem and walk away.

The OCD perfectionist programmer
You want to do what to my code?

This guy doesn’t care about your deadlines or budgets, those are insignificant
when compared to the art form that is programming. When you do finally receive
the finished product you will have no option but submit to the stunning glory and
radiant beauty of perfectly formatted, no, perfectly beautiful code, that is so
efficient that anything you would want to do to it would do nothing but defame a
masterpiece. He is the only one qualified to work on his code.

The anti—-programming programmer

I'm a programmer, damnit. I don’t write code. What on carth are
His world has one simple truth; writing code is bad. If you have to write you doing?
something then you’re doing it wrong. Someone else has already done the work [? S
so just use their code. He will tell you how much faster this development practice %

s. even though he takes as long or longer than the other programmers. But when

you get the project it will only be 20 lines of actual code and will be very easy to

read. It may not be very fast, efficient, or forward-compatible. but it will be done

with the least effort required.

The half-assed programmer

What do you want? It works doesn’t it? Another job well done.

~
The guy who couldn’t care less about quality, that's someone elses job. He <
accomplishes the tasks that he’'s asked to do, quickly. You may not like his work, %
the other programmers hate it, but management and the clients love it. As much I%

pain as he will cause you in the future, he is single-handedly keeping your
deadlines so you can’t scoff at it (no matter how much you want to).

The theoretical programmer

Well., that's a possibility, but in practice this might be a better alternative. And that's the REAL

This guy is more interested the options than what should be done. He will spend difference of O and 11!
80% of his time staring blankly at his computer thinking up ways to accomplish a
task. 15% of his time complaining about unreasonable deadlines, 4% of his time
refining the options, and 1% of his time writing code. When you receive the final
| always be accompanied by the phrase “if | had more time | could have
the right way”.

Mental Costs of Decisions

* Optimal decisions and will power have been studied to come
from a finite source
* This source is related to rest and glucose availability

* Generally thisideais related to what is termed decision fatigue
* https://en.wikipedia.org/wiki/Decision fatigue

* General Effect

“...if your willpower is depleted, you’re more likely to make a decision
that’s good in the short-term, but bad in the lon?-term. Once your
willpower is depleted, you become less likely to thoroughly consider the
complex tradeoffs some decisions reguire. “ _
http://greatiotbig.com/2011/08/decision-fatigue/

* Trouble: Codingis filled with decisions!

Decision Fatigue and the
Modern Programmer

* Programmers are people this stuff effects us

* Maybe more than the average personsince we work so heavily
with decisions

* http://effectivesoftwaredesign.com/2011/08/23/how-decision-
fatigue-affects-the-efficacy-of-programmers/

* Example: Copy-Paste coding

* What's easier thinking out an abstraction or copying paste some
working code?

 Answer:The later

* Downside: Your code bloated! Short-term gain but longterm
consequence of software rot

Why?

&& eval(me.

.on(me.int
.on(me.int
(me.
Stupid Mistake?

Tired?
Both?

Tech Fatigue

* Computingandthe web spacein particular suffers from a
proliteration of technologies
* http://www.sitepoint.com/drowning-in-tools-web-development-
industry/ ' i '
* https://medium.com/@ericclemmons/javascript-fatigue-
4,8d4011b6fcs#.tvzld2bjg) ' %
* TodoMVCexample

* Languages that compile to JS

* Generalized false assumption: 2.0 betterthan 1.0
* If sowhy do the majority of movie sequels suck so bad!?

* Combine thiswith impostorsyndrome (ifIdon‘t learn X | am
not worthy) and perfectionism (bettertool orapproach just
over the horizon) and gou can spend more time evaluating than
doing (rememberYak having??

Decision Off Load

* Employing deep higherlevel thinking uses lots of decision
energy and is ‘expensive’

* Solution 1: habits offload decisions

* Think CPU vs GPU, we want to move lots of our stuff to the “"HPU”
(Habit Processing Unit) of coding

* Conclusion: We should develop good programmer habits or
programming practices

* Solution 2: outsource decisions
* Use mental short-cuts like social proof to make decisions

* Opinionated Programming and Frameworks —people make a decision
and you just should acceptit, it's easier

* Solution 2 seems pretty dangerous and goes against our premise of
only being able to control for ourselves

Good Habits

* Habit - an acquired behavior pattern regularly followed that
becomes almostinvoluntary

* Habits are the kind of the things that can lead to some forms of
‘multitasking’

* The muscle memory of editing and reformatting for example

* How long to develop a habit?
21 days, 6 months, along time

* Hard to stick to habits
* Try ‘Micro Habits’— 1 yard plays Joe and | called it

* Code cleaning, relate to jobsite cleaning and technical debt

* Keystone Habits can lead to much much more

Habit Example

* Cleaningupthe work site mean code baseis a really
good habitto have
* If youdon't clean up, generally bad things happen (eventually)

* "Sweeping” your code can be the boring part butitis vitamins that
avoids your eventual need for aspirin

technical debt

Code Base effort for
@IS - - principal new features

. _~interest

Habits of The "Good”
Programmer Trending Again

summary

Write clean code

Test

Script everything

Learn your tools by heart

Optimize for flow

http://www.slideshare.net/andersjanmyr/habits-of-a-responsible-programmer

Hmmm...There’sa Reason

The Productive
Programmer

N ot)
»

\ = ﬁ“sx 0
"*& w&‘
«Mm

The

Healthy
Programmer

Get Fit, Feel Better,
and Keep Coding

Joe Kutner
oreword by Dr. Ed Walkitt,
physictan and software developer

ot Mt dibterd Ly Brsan P Hogan

The Clean Coder

A Code of Conduct for Professiona al Program

matic
ogramier

Pragmatic
Thinking
Learning

Refactor
Your Wetware

Efective
Programming

Class Notes on Productivity

* Clearly we can get really off trackand end up deepin self-
helptacticsandintrospection
* Maybe notabadthingunlessitleadsto analysis paralysis

* However, none of this stuff is good for us as aspiring Software
Engineersunless we find some applied use for it

* Participation Homework Choice #1—Spend some time
between now and next Tuesday lookingoverideas
presented onlineand in some of the mentioned texts and
presentior 2 itemsthat seem usefultoYOU if youare
calledoninclass

Embrace Failure

* Generally getting to a successful outcome takes many
failed outcomes.
* Well known quotes from Edison and others

* This often goes againstthe romanticidea of things

whaT Peo?|e Think w'naT of feo“y
it looks lke looks lke

Seeing the path to success from
the place you failed

The pain of learning and failureis
certainly not a new idea

LEARNING IS NOT
CHILD'S PLAY; WE
CANNOT LEARN
WITHOUT PAIN.

Aristotle 3
Greek philosopher and polymath

(384 BC 3 '

- DL
'W(

j ' l QuoteHD com

i

SUGCGESS IS A LOUSY-TEAGHER.

IT SEDUCES SMART-PEOPLEINTO

"THINKING 'I'IIEY(I!AH'I' LOSE.

Train for a Marathon, Not Sprints

* Most self-aware successful people tend to acknowledge the
role of perseverance, timing and luck in theireventualsuccess

* Writing meaningful code inreality takes a LONG time
* If your code becomes legacy you win...it generally means it is useful!

* Careful mistakingthatyou prove thereverse with the speed
code effort usingthe proof of idea by PoCaim of MVP
development, hackathons, market effects, etc.

* Code can be like wine, it can age well, but only underthe right
conditions and processes, take UNIX as an example. .
Converserly code can be like milk and spoil quickly, especially if
exposedtounstable dependencies and environments

AINGEPERSEVERANCE!
ANDITEN\YEARS
AR |1 \
NOVERNIGHTISUCCESS

SBILSTONE

GearUp

* Computer—buy the best systemyou can always

* | know we are students but really thisis like being a musician
please buy a good instrument!

* Focuson|/O
* Diskno, SSD yes
* Multiple monitors or single wide monitor
* Avoid cheap pointing devices
* Keyboard (see dedicated slide)

* Connectivity

* AirCards, WiFi access plans, VPN software if you must use public
access points, fiberifyoucan getit

Typing

* Beinga code programmer requiresyouto be a good (fast
and accurate) typist
* http://blog.codinghorror.com/we-are-typists-first-programmers-

second/

* Giventhe importance of typing
* Get agood keyboard see next slide
* Learntotype
* Try to keep your hands on the keyboard at all times

* Translation: Learn key commands, expanders, and build finger muscle memory
* Windowmanagement, text expansion examples

* Skeptical but strongopinions also surround possibility of changing
to Dvorak keyboarc?-
https://en.wikipedia.org/wiki/Dvorak_Simplified_Keyboard#Comp
arison_of_the_ QWERTY_and_Dvorak_layouts

Good Keyboards

* A mechanicalkeyboardiswidely thoughtas the way to go
* http://blog.codinghorror.com/the-keyboard-cult/

* http://www.tested.com/tech/accessories/460198-you-should-use-
mechanical-keyboard/

* https://codekeyboards.com/
* http://www.daskeyboard.com/
* Check e-Bay to see how much vintage mechanicals still fetch

Interesting Launch

typ | ng s | 0} plans & pricing lessons sign in

Typing Practice for Programmers

var runtil = /Untils/,
rparentsprev = /A(?:par

e a unique set when starting from a unique set

Practice typing the awkward characters in code.
No drills — type through open source code in JavaScript, Ruby, C, C++, Java, PHP, Perl, Haskell, Scala, and more.

Eliminate the mistyped keys delaying every edit-compile-test iteration.

It's free, just sign in.

Sign in with Google

or try the demo

https://typing.io/

“Tools”

* Clearly we should certainly select good tools

* Rule: A good does best with good tools, but good tools don't
make good :

* We should not be completely resistant to the evaluation of new tools
after we mastered atool though

* Tool analysis of course hasto happen with Fact #5 and #6 firmly held

* Tool analysis also shouldbe in light of specificneed as opposed to
generalizedsolution

* The newness or popularity of a toolis a far from perfect indicator of
the value or efficacy of the tool

Tool Belts and Boxes

* Giventhe programmer tendencyto look for general
solutions we see inindustry an over emphasis on
generalized tools ora search forthe “one true too

* Silver Bullets
* LoTR Fixations

|II

* Tools have trade-offs like anything else, best to have
’_chg correcttoolforthe job thanasingle toolforall
jobs

* Must acknowledge that too many tools leads to being

good at nothing both because of lack of heavy use ortool
compromise

R\ pra%matic metaphoristhe tool boxortool belt
en with

then some ‘goto’ tools within

Editors

* Compareto hammers - there isarange
* Finishing, General/Claw, Framing, etc.

* Simple Text Editor
* vi, emacs, Sublime, etc.

* Light Weight IDE
* Coda

* Full IDE
* Visual Studio, IntelliJ (WebStorm), Eclipse

* Emphasising
* Mouse or Keyboard
* Mode or not moded
* Manual or Auto(complete)
* Single Experience or Multi-Windowed/App Experienced

WebStorm

[*] ZingGrid-NG) [src) [1js) [core) [3% Eventjs » v | P & ¥ S $ @ 5 [pefaulttask~ || Q

[3% ButtonConstjs x [i§ ButtonTpljs x [55 Classjs x [Eventjs x [MiniButtonjs x [3§ MiniButtonTpljs x

E] menu.html x

&7 Project v @ = | -}~ [Buttonjs x [K] button.html x

[71ZingGrid-NG (~/Dropbox/src/ZingGrid-NG) var fns = {};

ol 1:Proj

«J 7: Structure

€ Grunt

- 2: Favorites

[Idoc
[limages
[1loader
1 bower_components
[Jexamples
[§] button.html
[§] grid.html
[§ menu.html
isin bower.json
[] index.html
[loader.js
isi package.json
[server.js
[1node_modules (library home)
Esrc
Cess
Cjs
[config
Clcore
[animation
[CIcomm
Cidom
CItypes
[E Class.js
[Event.js
=
Version Control: 26
Default 5 files
[Button.js ~/Dropbox
[ButtonConst.js
[MiniButton.js ~/D
[3 MiniButtonConst.js
[MiniButtonTpl.js
Unversioned Files 5 files

Wi« o]

o

» 6: TODO [Terminal @ 9:Version Control

26.Class(['2G.Event'],

/%« @lends ZG.Event.prototype x/
{

traits: {
classes: [
2Z6.TraitClass

1

/%K
* @constructs
* @param {Object} config
*/
constructor: function(config) {
var _this = this;
var listeners;
var len;
var lis;
var eventName;
var handler;
var scope;
var params;
config = config || {};

Z6.applyConfig(_this, confiq);
_this.$events = {};

if (_this.listeners || _this.events) {

listeners = _this.listeners || _this.events;

Event Log
LF$ UTF-8% GitMCT: & &

Class Notes on WebStorm

* Purposeful fixed (likely appropriate) choice
» JavaScriptfocused (soisour project)
* Web Dev focused (so isour project—at least mostly)

* Supports SE workflows within (Git, CodeReview, Refactor,
Ticketing, Building, etc.) as opposed to multi-tooling which should
clear gains once understood

* Refactoringtools are pretty good andthatis clearlygoingto be a
big point of the course

* Participation Homework Choice #2—Spend some time
between now and next Tuesday and learn some features
that you are motivated by in WebStorm. Be preparedto
explainand haveme try it in class

ComingUpin CSE 112

* Participation Homework Review
* Professor’sIn-Class Tour of WebStorm*

* Review of Projects from Gold and Blue Team'’s efforts from
last year

* Discussionof possible approaches goingforward
* Peter’s pressure to get going

